
MATH 5763 Homework 8 Due Fri, 4/15/11

Problem 1. Let the function F : R→ [0, 1] shown in Figure 1 be defined by F (x) = 0 for
x ≤ 0, F (x) = 1 for x ≥ 1, and
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Figure 1: Graph of the function F .

Show that

∫
R

dF (x) = 1 ,

∫
R
x dF (x) =

1

3
,

∫
R

lnx dF (x) = −2 ln 2 .

Hint: You will need that, for |q| < 1,
∞∑
k=1

k qk−1 =
d

dq

∞∑
k=0

qk =
d

dq

1

1− q
=

1

(1− q)2
.

Problem 2. A system is made up of two components. We suppose that the lifetime
(in years) of each component has an exponential distribution with parameter λ = 2 yr−1,
and that the components operate independently. When the system goes down, the two
components are then immediately replaced by new ones. Consider the following three cases:

I. the two components are placed in series (so that both components must function for
the system to work);

II. the two components are placed in parallel (so that a single operating component is
sufficient for the system to function) and the two components operate at the same
time);

III. the two components are placed in parallel, but only one component operates at a time,
and the other component is in standby (i.e., ready to replace the first component when
it fails).
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Let {Nt : t ≥ 0} be the number of system failures in the interval [0, t]. Answer the following
questions in each of the cases above.

(a) Is {Nt : t ≥ 0} a Poisson process? If it is, what is its rate? If it is not, justify, and
determine the probability distribution of the inter-event times τj.

(b) What is the average time elapsed between two consecutive system failures? In two of
the above three cases the answer is obvious (but I do want to see your calculations).
Please discuss your results in these two cases.

Problem 3. In class we considered an M(λ)/G/1 queueing process Q(t) where the arrival
of customers is according to Poisson process of intensity λ (i.e., the inter-arrival times are
i.i.d. random variables of type Exp(λ)), the service times are independent random variables
with general (known) distribution, and one server. Let the service times Sn (where Sn is
the time it takes to serve the nth customer) be independent random variables (which are
also independent of the arrival times) with a common distribution that is known (i.e., you
assume that you know the p.m.f. pS of Sn if it is a discrete random variable, or the p.d.f. fS
of Sn if it is continuous).

Since such processes are difficult to deal with since they are not Markov, we defined a discrete
stochastic process embedded in the queueing process Q(t) that turns out to be Markov. Let
Dn be the time of departure of the nth customer from the system, and Yn := Q(D+) be the
number of customers which the nth customer leaves behind after he/she leaves the queue. To
show that {Yn}∞n=0 is a Markov process, let Un be the number of customers arriving during
the service time (of length Sn+1) of the (n+ 1)st customer. In class we showed that

Yn+1 =

{
Un if Yn = 0 ,

Yn + Un − 1 if Yn ≥ 1 .

This can also be written as

Yn+1 = Yn + Un − 1 + h(Yn) , where h(Yn) :=

{
1 if Yn = 0 ,

0 if Yn ≥ 1 .

Since the process of arrival is Poisson of intensity λ, the number of customers arriving
during time interval of duration Sn+1 is Un ∼ Poisson(λSn+1), from where it is clear that
the discrete-time process {Yn} embedded in the continuous-time queueing process {Q(t)}
is a Markov process. We derived the transition probability matrix P of this discrete-time
process:

P =


δ0 δ1 δ2 δ3 δ4 δ5 · · ·
δ0 δ1 δ2 δ3 δ4 δ5 · · ·
0 δ0 δ1 δ2 δ3 δ4 · · ·
0 0 δ0 δ1 δ2 δ3 · · ·
0 0 0 δ0 δ1 δ2 · · ·

 , where δj = E
[

(λS)j

j!
e−λS

]
. (1)
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Define the trafic intensity (also called traffic density, or offered load) of the queue as

ρ :=
expected service time

expected interarrival time
=

E[S]

1/λ
= λE[S] .

One can show that for the embedded Markov chain {Yn} is positive recurrent if and only if
ρ < 1; if ρ = 1, {Yn} is null-recurrent, and if ρ > 1, {Yn} is transient. If ρ < 1, {Yn} has a
stationary distribution.

(a) Check that the matrix P = (pij)
∞
i,j=0 defined by (1) is a stochastic matrix in general

(i.e., for any distribution of the service time S).

Hint: This is very easy and requires almost no calculations, but you have to give me a
clear argument, and to write explicitly which properties you use at each step.

(b) Compute δj in the case of M(λ)/M(µ)/1 queue, i.e., when S ∼ Exp(µ) (in which case
E[S] = 1

µ
).

(c) Compute δj if S is deterministic, taking value 1
µ

with probability 1. (We take S to be

equal to 1
µ

so that E[S] be the same as in part (a).

(d) Compute δj if S is uniformly distributed on [0, 2
µ
] (so that, again, E[S] = 1

µ
).

Problem 4. Let N = {Nt : t ≥ 0} be a Poisson process with a constant rate λ. In
the midterm exam you obtained many results about this process. You are allowed to use
the information about Poisson processes given in the statement of the problem from the
midterm, and can use in your answers to the questions below all results obtained in the
midterm without deriving them again (but please write explicitly which results you use).

(a) Is N a wide-sense stationary process? Explain briefly.

(b) Is N a strong-sense stationary process? Why?

(c) Recall that the probability mass function of order k of a discrete state space stochastic
process X was defined (on page 49 of the book) as

p(x1, . . . , xk; t1, . . . , tk) = P(Xt1 = x1, . . . , Xtk = xk) .

Determine the probability mass functions of orders 1, 2, and 3, p(i; r), p(i, j; r, s),
p(i, j, k; r, s, t), of the Poisson process N assuming that 0 ≤ r ≤ s ≤ t, and that i,
j, k are non-negative integers. Clearly, since the Poisson process is non-decreasing,
p(i, j; r, s) and p(i, j, k; r, s, t) will be non-zero only if i ≤ j ≤ k.
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