
MATH 5763 Homework 8 Due Thu, 11/12/2015

Problem 1. Vehicles pass a pedestrian crossing at the instants of a Poisson process of intensity λ.
It takes you a seconds to cross the street, so you need that the time interval between two successive
cars passing by you is at least of length a. Let T be the first time at which you would succeed in
crossing to the other side; note that T is the sum of the time that you may need to wait on the
sidewalk before starting to cross the street and the time a during which you are crossing the street.
The situation is shown pictorially in Figure 1.

Crossing

3rd car 2nd car 1st car

��
��
��
��

��
��
��
��

��������
�
�
�
�

�������� ����

����

Figure 1: A pedestrian is waiting to cross the street.

In Figure 2, you see the time axis (assume that you started the stopwatch at the moment you
arrived at the street), with the moments T1, T2, and T3 of the first, second, and third cars passing
the crossing, and the time interval a you need in order to cross. Clearly, a does not fit between 0
and T1, as well as between T1 and T2; it, however, fits between T2 and T3, so you will start crossing
at t = T2, and reach the other side of the street at time t = T2 + a, so that in this case the random
variable T has value T = T2 + a, as shown in the figure.
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Figure 2: On the meaning of the random variable T .

(a) Explain in a couple of sentences why

E[T |T1 = t1] =

{
a , t1 > a,

t1 + E[T ] , t1 < a .

(b) Use your result from part (a) and the Tower Rule in the form E[T ] = E[E[T |T1]] to show that
the expectation E[T ] satisfies the integral equation

E[T ] =

∫ a

0
(x+ E[T ])λe−λx dx+ ae−λa .
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(c) Solve the integral equation for E[T ] derived in part (b).

Hint: This is very easy, you don’t need to apply any sophisticated techniques! For your
convenience, here are some integrals:∫ a

0
xλe−λx dx =

1

λ
− 1

λ
e−λa − ae−λa∫ a

0
λe−λx dx = 1− e−λa .

(d) Does the expression for E[T ] you derived in part (c) behave reasonably (i.e., matches your
intuition) in the limits λ→ 0 and λ→∞? Discuss briefly for each of these two cases.

(e) Now suppose that there are two lanes to cross, carrying independent Poissonian traffic with
respective intensities λ and µ. You need time a to cross the first lane and time b to cross the
second lane. Find the expected total time to cross the street in the following two cases:

(i) there is an island between the two lanes where you can stay safely;

(ii) you must cross both lanes at once, for which, of course, you will need time a+ b;

Hint: You can use your results from part (c) applied to cases (i) and (ii). Recall that the
superposition of two Poisson processes is a Poisson process (see Problem 4(a) of Homework 5).

(f) Which of the total times found in (e) is greater – in case (i) or in case (ii)? Of course, you
can answer this question by comparing your answers in the cases (i) and (ii) above, but don’t
do this here – just give a simple intuitive argument.

Problem 2. In class we considered an M(λ)/G/1 queueing process Q(t) where the arrival of
customers is according to Poisson process of intensity λ (i.e., the inter-arrival times are i.i.d. random
variables of type Exp(λ)), the service times are independent random variables with general (known)
distribution, and one server. Let the service times Sn (where Sn is the time it takes to serve the
nth customer) be independent random variables (which are also independent of the arrival times)
with a common distribution that is known (i.e., you assume that you know the p.m.f. pS of Sn if it
is a discrete random variable, or the p.d.f. fS of Sn if it is continuous).

Since such processes are difficult to deal with since they are not Markov, we defined a discrete
stochastic process embedded in the queueing process Q(t) that turns out to be Markov. Let Dn

be the time of departure of the nth customer from the system, and Yn := Q(D+) be the number
of customers which the nth customer leaves behind after he/she leaves the queue. To show that
{Yn}∞n=0 is a Markov process, let Un be the number of customers arriving during the service time
(of length Sn+1) of the (n+ 1)st customer. In class we showed that

Yn+1 =

{
Un if Yn = 0 ,

Yn + Un − 1 if Yn ≥ 1 .

This can also be written as

Yn+1 = Yn + Un − 1 + h(Yn) , where h(Yn) :=

{
1 if Yn = 0 ,

0 if Yn ≥ 1 .
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Since the process of arrival is Poisson of intensity λ, the number of customers arriving during time
interval of duration Sn+1 is Un ∼ Poisson(λSn+1), from where it is clear that the discrete-time
process {Yn} embedded in the continuous-time queueing process {Q(t)} is a Markov process. We
derived the transition probability matrix P of this discrete-time process:

P =


δ0 δ1 δ2 δ3 δ4 δ5 · · ·
δ0 δ1 δ2 δ3 δ4 δ5 · · ·
0 δ0 δ1 δ2 δ3 δ4 · · ·
0 0 δ0 δ1 δ2 δ3 · · ·
0 0 0 δ0 δ1 δ2 · · ·

 , where δj = E
[

(λS)j

j!
e−λS

]
. (1)

Define the trafic intensity (also called traffic density, or offered load) of the queue as

ρ :=
expected service time

expected interarrival time
=

E[S]

1/λ
= λE[S] .

One can show that for the embedded Markov chain {Yn} is positive recurrent if and only if ρ < 1;
if ρ = 1, {Yn} is null-recurrent, and if ρ > 1, {Yn} is transient. If ρ < 1, {Yn} has a stationary
distribution.

(a) Check that the matrix P = (pij)
∞
i,j=0 defined by (1) is a stochastic matrix in general (i.e., for

any distribution of the service time S).

(b) Compute δj in the case of M(λ)/M(µ)/1 queue, i.e., when S is a random variable of type
Exp(µ) (in which case E[S] = 1

µ).

Hint: Recall that Γ(k) =

∫ ∞
0

ξk−1 e−ξ dξ = (k − 1)! for any k ∈ N.

(c) Compute δj if S is deterministic, taking value 1
µ with probability 1. (We take S to be equal

to 1
µ so that E[S] be the same as in part (b).)

(d) Compute δj if S is uniformly distributed on [0, 2µ ] (so that, again, E[S] = 1
µ).

Problem 3. Consider again the flip-flop process X = {Xt : t ≥ 0} from Problem 1 of Homework 6.
Namely, assume that N = {Nt : t ≥ 0} is a Poisson process with intensity λ, and define the flip-flop
process X = {Xt : t ≥ 0} with state space S = {0, 1} by

Xt =
1

2
+ (−1)Nt

(
X0 −

1

2

)
,

where X0 is a random variable with values in S that is independent of the process N . This
complicated formula simply means that the process X switches between 0 and 1 at each event
of N . Since N is a time-homogeneous Markov chain, X is also a time-homogeneous Markov chain.

Assume that the initial state X0 of the Markov chain X is a random variable with distribution

pj(0) = P(X0 = j) =
1

2
for j = 0, 1 .
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Note that p(0) =
(
1
2

1
2

)
is the stationary distribution of the chain X, as you found in Homework 6.

Recall that in Homework 6 you have found (in several ways) the stochastic semigroup Pt of the
continuous-time Markov chain X:

Pt =

(
p00(t) p01(t)

p10(t) p11(t)

)
=

(
1
2(1 + e−2λt) 1

2(1− e−2λt)
1
2(1− e−2λt) 1

2(1 + e−2λt)

)
.

(a) Show the distribution of the random variable Xt is p(t) =
(
p0(t) p1(t)

)
=
(
1
2

1
2

)
(where

pi(t) = P(Xt = i)). You should do this in two ways: (1) by a calculation using the explicit
expressions for Pt and p(0), and (2) by giving a simple reason why this is the answer, without
any calculations.

(b) For s ≥ 0, t ≥ 0, show that the expectation of Xt is mX(t) := E[Xt] = 1
2 , and the autocorre-

lation function is RX(s, s+ t) := E[XsXs+t] = 1
4

(
1 + e−2λt

)
.

Hint: To compute the expected value of the product XsXs+t, use the Tower Rule by condi-
tioning on the state of the system at the earlier time, namely, E[XsXs+t] = E[E[XsXs+t|Xs]].
You can first compute

E[XsXs+t|Xs = j] = j E[Xs+t|Xs = j] = j
1∑

k=0

k pjk(t) = · · · ,

and then apply the Tower Rule,

E[XsXs+t] = E[E[XsXs+t|Xs]] =
1∑

k=0

E[XsXs+t|Xs = j]P(Xs = j) = · · · .

(c) Is the process X weakly stationary? Explain briefly.

(d) Compute the autocovariance function

CX(s, s+t) := Cov (Xs, Xs+t) = E[(Xs−EXs)(Xs+t−EXs+t)] = RX(s, s+t)−mX(s)mX(s+t) ,

and show that the autocorrelation function is equal to e−2λt.

(e) Define the random process

Yt :=

∫ t

0
Xu du , t ≥ 0 .

Show that E[Yt] = t
2 and E[Y 2

t ] = t2

4 + t
4λ −

1
8λ2

(
1− e−2λt

)
.

Hint: The expectation of the integral over t is equal to the integral over t of the expectation
of the integrand, so that

E[Yt] = E
[∫ t

0
Xu du

]
=

∫ t

0
E [Xu] du = · · · .
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For E[Y 2
t ], you can write

E[Y 2
t ] = E

[(∫ t

0
Xu du

)(∫ t

0
Xv dv

)]
= E

[∫ t

0

∫ t

0
XuXv dudv

]

=

∫ t

0

(∫ u

0
E [XuXv] dv

)
du+

∫ t

0

(∫ v

0
E [XuXv] du

)
dv

[where we split the square [0, t]× [0, t] in two parts]

= 2

∫ t

0

(∫ v

0
E [XuXv] du

)
dv ;

now notice that in the last integral the integration is over 0 ≤ u ≤ v ≤ t, and recall that in
part (b) you found that E [XuXv] = 1

4

(
1 + e−2λ(v−u)

)
for v > u.

(f) Find varYt for the random process defined in part (e). Does varYt behave reasonably in the
limit t→ 0+? Explain.

Food for Thought Problem 1. Use the definition of the Dirac δa-function and its derivatives,
namely, ∫

R
δa(x) f(x) dx := δa(f) := f(a) , (δ(k)a )(f) := (−1)k f (k)(a) ,

to show that∫
R
x3 δ2(x) dx = 8 ,

∫
R

e5x
2
δ2(x) dx = e20 ,

∫
R

e5x
2
δ′2(x) dx = 10 e20 .

Food for Thought Problem 2. Let a > 0 be an arbitrary number, and

ua(x) = u(x− a) =

{
0 , x < a,

1 , x > a ,

be the Heaviside function with a jump at a. By definition, the kth derivative of a generalized
function ξ is defined by

(ξ(k))(f) := (−1)kξ(f (k)) ,

where f is an arbitrary test function. One can consider ua as a generalized function defined by

ua(f) :=

∫
R
ua(x) f(x) dx .

Show that u′a = δa, i.e., that for an arbitrary test function f

(u′a)(f) := δa(f) = f(a) .

You can proceed as follows:

(u′a)(f) = −ua(f ′) = −
∫
R
ua(x) f ′(x) dx = −

∫ ∞
a

f ′(x) dx = − lim
x→∞

f(x) + f(a) = · · · .
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