
MATH 5163 Homework 8 Due Wed, 4/9/14, 5 p.m.

Problem 1. [The 1-dimensional wave equation]

In this problem you will rederive the expressions we obtained for the solution of the wave
equation in one spatial dimension, using Fourier transform and Duhamel’s principle. Please
follow the steps below.

(a) Let K(x, y, t) be the fundamental solution of the 1-dimensional wave equation, i.e.,

Ktt − c
2Kxx = 0 , x ∈ R , t > 0 ,

K(x, y,0) = 0 ,

Kt(x, y,0) = δ(x − y) ,

where y ∈ R is a fixed value. Use Fourier transform in x,

K̂(ξ, y, t) = ∫
R
K(x, y, t) e−iξx dx ,

K(x, y, t) =
1

2π ∫R
K̂(ξ, y, t) eiξx dξ ,

to write down and solve an initial-value problem for the Fourier transform K̂(ξ, y, t)
of K(x, y, t).

(b) Perform inverse Fourier transform of K̂(ξ, y, t) to derive an explicit expression for
K(x, y, t). You may find useful that

(Fχ[−a,a]) (ξ) = 2
sinaξ

ξ

where χ[−a,a](x) =H(a − ∣x∣) is the indicator function of the interval [−a, a] for a > 0.

(c) Use the expression for K(x, y, t) to write down the solution of the initial-value problem

utt − c
2uxx = 0 , x ∈ R , t > 0 ,

u(x,0) = 0 ,

ut(x,0) = h(x) .

Simplify the expression as much as possible (you should obtain a part of d’Alembert’s
formula).

(d) Use the expression for K(x, y, t) to write down the solution of the initial-value problem

vtt − c
2vxx = 0 , x ∈ R , t > 0 ,

v(x,0) = g(x) ,

vt(x,0) = 0 .
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In class we did this for the 3-dimensional wave equation, but the 1-dimensional case is
completely analogous. Simplify the expression as much as possible (again, you should
obtain a part of d’Alembert’s formula).

(e) Use Duhamel’s principle to write down the solution of the initial-value problem

wtt − c
2wxx = f(x, t) , x ∈ R , t > 0 ,

w(x,0) = 0 ,

wt(x,0) = 0 .

Again, simplify the expression as much as possible.

Problem 2. [Method of descent from the 2-D to the 1-D wave equation]

Use Hadamard’s method of descent to derive the fundamental solution K(1)(x, t) of the wave
equation in one spatial dimension from the fundamental solution of the 2-dimensional wave
equation,

K(2)(x⃗, t) =
1

2πc

H(ct − ∣x⃗∣)
√
c2t2 − ∣x⃗∣2

, x⃗ = (x, y) ∈ R2 , t > 0 ,

where H is the Heaviside function and ∣x⃗∣ =
√
x2 + y2.

Problem 3. [Uniqueness of the solution of the wave equation by energy method]

Let Ω ⊂ R3 be a bounded domain with C1 boundary ∂Ω. Consider the initial boundary value
problem

utt(x, t) − c
2∆u(x, t) = f(x, t) , (x, t) ∈ Ω × (0,∞) ,

BC (Dirichlet, Neumann, or Robin) ,

IC ∶ u(x,0) = g(x) , ut(x,0) = h(x) .

(1)

The energy of the field u(x, t) at time t is defined by

E(t) ∶= ∫
Ω
(

1

2
u2
t +

c2

2
∣∇u∣2) dx .

(a) Use the PDE from (1) and the Green formula

∫
Ω
(∇φ ⋅ ∇ψ + φ∆ψ)dx = ∮

∂Ω
φ∇ψ ⋅ dS (= ∮

∂Ω
φ
∂ψ

∂ν
dS)

to find an expression for the rate of change E′(t) of the energy of the physical system
described by (1).
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(b) Let u(x, t) and v(x, t) be solutions of the IBVP (1), and w(x, t) ∶= u(x, t) − v(x, t).
Write down the IBVP satisfied by the function w(x, t) for each of the following three
boundary conditions:

u(x, t) = g(x, t) , x ∈ ∂Ω (Dirichlet) ,

∂u

∂ν
(x, t) = g(x, t) , x ∈ ∂Ω (Neumann) ,

∂u

∂ν
(x, t) + α(x, t)u(x, t) = g(x, t) , x ∈ ∂Ω (Robin) ,

(2)

where α is a positive function and g is an arbitrary function (defined on ∂Ω × (0,∞)).

(c) For each of the three types of boundary conditions (Dirichlet, Neumann, and Robin),
show that the energy of the field w defined in part (b) is a non-increasing function of t.
Use this to conclude that, if w ∈ C2(Ω×(0,∞)), then w ≡ 0. This shows the uniqueness
of the solution of (1) in C2(Ω × (0,∞)).

Problem 4. [“Sources of heat” coming from heat flux through the boundary]

Imagine an infinite thin slab in R3 filling the space between the parallel planes z = 0 and
z = h. Let the temperature in the slab be given by the function u(x, y, z, t), where (x, y) ∈ R2,
z ∈ [0, h], t > 0. At the two boundaries (at z = 0 and at z = h) the slab exchanges heat with
the surrounding atmosphere through convection. The temperature u0 of the surrounding
air is the same everywhere (on both sides of the slab). Assume that the initial temperature
of the slab does not depend on z, but only on x and y. The temperature u in the slab is
described by the initial-boundary value problem

cρut(x, t) = k∆u(x, t) , x = (x, y, z) ∈ R2 × [0, h] , t > 0 ,

−
∂u

∂z
(x, y,0, t) + α [u(x, y,0, t) − u0] = 0 ,

∂u

∂z
(x, y, h, t) + α [u(x, y, h, t) − u0] = 0 ,

u(x,0) = g(x, y) .

(3)

Here c, ρ, and k are positive constants characterizing the properties of the material of which
the slab is made, and α > 0 is a constant characterizing the rate of the heat exchange between
the slab and the surrounding atmosphere.

If the slab is very thin, then one can ignore the variation of the temperature in z direction
and consider it only as a function of x, y, and t; let v(x, y, t) stand for the temperature in
the slab in this approximation.

Although there are no sources of heat in the slab (and, correspondingly, no heat source term
in the PDE in (3)), because of the heat flux through the planes at z = 0 and z = h, the slab
will exchange heat with the surrounding atmosphere, so that the temperature v(x, y, t) of

3



the slab (in the approximation of very thin slab) will satisfy a heat equation with a term
accounting for the sources of heat, i.e., an equation of the form

cρ vt(x, y, t) = k∆⊥v(x, t) +Ψ(x, y, t) , (4)

where ∆⊥ = ∂xx + ∂yy is the two-dimensional Laplacian. The density of the sources of heat –
i.e., the function Ψ(x, y, t) in the right-hand side of (4) – is an expression that involves the
temperature v(x, y, t). In this problem you will formulate an initial value problem for the
temperature v(x, y, t) in the thin slab. Please follow the steps below.

(a) Define the following differential operators:

∇⊥ ∶= i∂x + j∂y , ∆⊥ ∶= ∇⊥ ⋅ ∇⊥ = ∂xx + ∂yy ,

then clearly
∇ = ∇⊥ + k∂z .

Show that
∆ = ∆⊥ + ∂zz .

(b) Let A ⊂ R2 be an arbitrary open connected (i.e., consisting of “one piece”) bounded
domain in the (x, y)-plane, with boundary ∂A. Let νA(x, y) be the outward unit
normal vector to A at the point (x, y) ∈ ∂A. If f ∶ A → R is a scalar function, explain
the origin of the identity

∬
A

∆f(x, y)dxdy = ∮
∂A
∇⊥f ⋅ νA d` = ∮

∂A

∂f

∂νA
(x, y)d` ,

where d` is the line element of ∂A.

(c) Let D ∶= A × [0, h] ⊂ R3, where A is the two-dimensional domain from part (b). The
boundary ∂D of D consists of three parts:

– top: A × {h} = {(x, y, h) ∶ (x, y) ∈ A},

– bottom: A × {0} = {(x, y,0) ∶ (x, y) ∈ A},

– side: (∂A) × [0, h] = {(x, y, z) ∶ (x, y) ∈ ∂A, z ∈ [0, h]}.

The Divergence Theorem then implies

∭
D

∆u(x, y, z, t)dxdy dz =∯
∂D

∇u(x, y, z, t) ⋅ dS

= (∬
{top}∪{bottom}

+∬
{side}

) (∇⊥ + k∂z)u(x, y, z, t) ⋅ dS .

Show in detail that

∬
{top}∪{bottom}

(∇⊥ + k∂z)u(x, y, z, t) ⋅ dS =∬
A
[uz(x, y, h, t) − uz(x, y,0, t)]dxdy .
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(d) Use the boundary conditions in (3) to rewrite the expression for the double integral

∬
{top}∪{bottom}

(∇⊥ + k∂z)u(x, y, z, t) ⋅ dS obtained in part (c) in terms of the function

u at the top and at the bottom of D. Then take the thickness h of the slab to zero
and assume that the function u is independent of z, i.e., set u(x, y, z, t) = v(x, y, t), to
write the integral over ({top} ∪ {bottom}) as a double integral over A of [v(x, y, t)−u0]

(times some constants).

(e) Now rewrite ∬
{side}

(∇⊥ + k∂z)u(x, y, z, t) ⋅ dS = ∬
(∂A)×[0,h]

(∇⊥ + k∂z)u(x, y, z, t) ⋅ dS

under the assumption of very small thickness h and temperature u that is independent
of z (i.e., u(x, y, z, t) = v(x, y, t)), as a double integral over A. The identity from
part (b) will be useful.

(f) Integrate the PDE in (3) over the domain D = A × [0, h] and use your results from
the previous parts of the problem to show that the PDE for the function v(x, y, t)
describing the temperature in a very thin slab is

cρ vt(x, y, t) = k∆⊥v(x, t) −
2αk

h
[v(x, y, t) − u0] . (5)

To check (just for yourself) that the units are OK, here are the units of the quantities
involved (J = Joule, K = Kelvin):

[c] =
J

kg K
, [ρ] =

kg

m3
, [k] =

J

m s K
, [v] = [u0] = K , [α] =

1

m
, [h] = m

(g) To gain intuition, solve (5) in the extremely simplified situation when the temperature
in the slab does not depend on x and y, but only on t; to this end, assume that
the initial temperature in the slab is v(x, y,0) = g0 = const. Write down an initial
value problem for the ordinary differential equation that the function w(t) ∶= v(x, y, t)
satisfies, and solve it. Does your solution look physically reasonable in the following
aspects:

– the asymptotic behavior of the temperature in the slab lim
t→∞

w(t);

– the dependence of w(t) on the constant α proportional to the heat exchange
between the slab and the surrounding air;

– the dependence of w(t) on the thickness h of the slab?

5


