
MATH 4093/5093 Homework 8 Due Mon, 11/22/10

Problem 1. The polynomials

S0(x) = 4 + 4(x− 1) + 13(x− 1)2 − 9(x− 1)3 , x ∈ [1, 2] ,

S1(x) = a + b(x− 2) + c(x− 2)2 + d(x− 2)3 , x ∈ [2, 3]

form the clamped cubic spline interpolant for some function f(x) that is known to satisfy
f ′(1) = −f ′(3).

(a) Use this information to find the values of the coefficients a, b, c, and d.

(b) Compute S ′(2.5).

Problem 2. Download Brady’s codes newton_sys.m, LUfactor.m and LUsolve.m from
www.pcs.cnu.edu/~bbradie/msystems.html. The code newton_sys.m finds roots of sys-
tems of algebraic equations by using Newton’s method. This code uses the codes LUfactor.m
and LUsolve.m, which perform an LU decomposition, respectively forward and backward
substitution, and are called in each step of the Newton’s iteration.

Solve the nonlinear system

x1 − x2 − x3
1 = −9

x1 + x2 − x3
2 = −22

by using newton_sys.m, starting from the initial approximation x(0) = (3 4)T , with tolerance
10−6. If the files defining the nonlinear system and the Jacobian are called eqns_newt.m and
jac_newt.m, then you have to run newton_sys.m as follows:

newton_sys (@eqns_newt, @jac_newt, [3 4], 1e-6, 100)

The exact solution is x∗ = (2 3)T . Compute the `2- norms of the errors at each step:
‖x(0) − x∗‖2, ‖x(1) − x∗‖2, ‖x(2) − x∗‖2, . . . by using the Matlab command norm (type
help norm in Matlab for help).

Please write in detail all your calculations (with paper and pencil) that you needed to write
your codes, and attach printouts of your Matlab codes and output.

Problem 3. From the web-site www.pcs.cnu.edu/~bbradie/mbvps.html download the
Matlab code linfd.m, and from www.pcs.cnu.edu/~bbradie/msystems.html download
tridiagonal.m (this code is needed for linfd.m).

1

(a) The code linfd.m uses finite difference method to solve a linear boundary-value prob-
lem with Dirichlet, Neumann, or Robin boundary conditions (as explained in Sec-
tion 8.2 of the book and, more succinctly, in the file notes-pde1-5093-f10.pdf of the
lecture notes). Run this code to solve the linear Dirichlet boundary value problem

y′′ = 4xy′ + (1− 4x2)y + ex2

, x ∈
[
0, π

2

]
,

y(0) = 1 , y
(

π
2

)
= 2eπ2/4 ,

whose exact solution is
yexact(x) = (1 + sin x)ex2

.

Plot both the exact and the approximate solution on the same graph, using lines for
the exact solution and stars for the approximate solution. Note that the code linfd.m

Suppose that you want to test the accuracy of the code by dividing the interval [a, b] =
[0, π

2
] into N = 100 subintervals of equal length, in which case you have to create a

uniform grid of (N + 1) points xj, j = 0, 1, . . . , N . Then you want to compute the
values of the exact solution at each of of the exact solution at each of the grid points
xj, j = 0, 1, . . . , N . You can do this with the commands

N=100;

ti=linspace(0,pi/2,N+1);

theor=(1+sin(ti)).*exp(ti.^2);

Then you run the code linfd.m with N = 100, and create a vector wi of length N + 1
with the approximate values of the solution of the boundary value problem.

(b) Solve the problem from part (a) with N = 10, 100, 1000 and 10000, and compute
the norms ‖exact− wi‖∞ of the absolute errors for each N (you can do this with the
command norm(theor-wi,Inf)). What seems to be the order of convergence?

(c) Solve the boundary value problem

y′′ = 4xy′ + (1− 4x2)y + ex2

, x ∈
[
0, π

2

]
,

y(0) = 1 , πy
(

π
2

)
+ y′

(
π
2

)
= 4πeπ2/4 ,

and then the boundary value problem

y′′ = 4xy′ + (1− 4x2)y + ex2

, x ∈
[
0, π

2

]
,

y(0) = 1 , πy
(

π
2

)
− y′

(
π
2

)
= 0 ,

in both cases use N = 10000. These two boundary value problems have the same
solution as the one in part (a). For each of the two boundary value problems in this
part plot both the theoretic and the numerical solution. What do you observe?

2

(d) Do the same as in part (c) with the boundary value problems

y′′ = 4xy′ + (1− 4x2)y + ex2

, x ∈
[
0, π

2

]
,

y(0) = 1 , πy
(

π
2

)
− y′

(
π
2

)
= 0.0001 ,

and

y′′ = 4xy′ + (1− 4x2)y + ex2

, x ∈
[
0, π

2

]
,

y(0) = 1 , πy
(

π
2

)
− y′

(
π
2

)
= −0.0001 .

What is the moral of your observations?

Problem 4. From the web-site www.pcs.cnu.edu/~bbradie/mbvps.html download the
Matlab code linshoot.m. In this problem you will study this code and its performance only
for the case of Dirichlet boundary value problems. In the notations of this code, the boundary
conditions are defined by the 3-dimensional vectors alpha and beta in the following way:

alpha(1) u(a) + alpha(2) u′(a) = alpha(3)

beta(1) u(b) + beta(2) u′(b) = beta(3) ,

where [a, b] is the interval in which we are solving the boundary value problem. Therefore,
the case of Dirichlet boundary conditions corresponds to alpha(2) = beta(2) = 0.

Note that the output of this code is not a vector, but a 2× (N + 1) matrix, the first column
of which contains the approximate values of the solution evaluated at the nodes, and the
second column contains the approximate values of the derivatives of the solution evaluated
at the nodes. If you call the code like this:

wi = linshoot(@coeffs, 0.0, pi/2.0, 100, [1 0 1], [1 0 2*exp(pi^2/4)]);

then wi will be a 2× 101 matrix. If you then want to use only the first row of wi, you can
type wi(1,:), which will be a vector of dimension 101.

(a) Explain in detail what the code linshoot.m, make connection with the theory studied
in class, write all necessary formulae.

(b) Do with this code the same as in Problem 3(a).

(c) Do with this code the same as in Problem 3(b).

3

Problem 5 (FOOD FOR THOUGHT ONLY, NOT TO BE TURNED IN!)
Download the code nonlinshoot.m from www.pcs.cnu.edu/~bbradie/mbvps.html.

(a) Explain what this code does in the case of Dirichlet boundary conditions; the Dirichlet
boundary conditions are encoded in the same way as in the code linshoot.m, studied
in problem 4 (using the 3-dimensional vectors alpha and beta).

(b) In this part of the problem you will solve the nonlinear Dirichlet boundary value
problem

y′′ = −2y2 + 8x2y3 , x ∈ [0, 1] ,

y(0) = 1 , y(1) = 1
2

,

whose exact solution is yexact(x) = 1
1+x2 .

Create the file coeffs_nonlin.m containing the following two lines:

function rhs = coeffs_nonlin(x, u, up)

rhs = - 2 * u^2 + 8 * x^2 * u^3 ;

and run the following Matlab commands for N = 10, N = 100, and N = 1000:

ti=linspace(0,1,N+1);

theor=1./(1+ti.^2);

wi=nonlinshoot(@coeffs_nonlin,0.0,1.0,N,[1 0 1],[1 0 0.5],1e-6,100,[0 1]);

norm_diffs=norm(theor-wi(1,:),Inf)

plot(ti,theor,’-’,ti,wi(1,:),’*’)

(c) What is the observed order of convergence from the data collected in part (b)?

4

