Problem 1.

(a) Let $f:[-1,1] \rightarrow \mathbb{R}$ be given by $f(x)=2|x|$, and define $F(x):=\int_{-1}^{x} f$.

Find a piecewise algebraic formula for $F(x)$ for all $x \in[-1,1]$. Looking at the formula, answer the following questions.

- Where is F continuous?
- Where is F differentiable?
- Where does $F^{\prime}(x)$ equal $f(x)$?
(b) Repeat part (a) for the function $g:[-1,1] \rightarrow \mathbb{R}$ given by

$$
g(x)= \begin{cases}1, & x \in[-1,0) \\ 2, & x \in[0,1]\end{cases}
$$

Problem 2.

(a) Show that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $\int_{a}^{x} f=0$ for all $x \in[a, b]$, then $f(x)=0$ for all $x \in[a, b]$.
(b) Provide an example to show that the conclusion that f is identically zero on $[a, b]$ does not follow if f is not continuous.

Problem 3. Assume that $f_{n} \rightarrow f$ pointwise and $f_{n}^{\prime} \rightarrow g$ uniformly on $[a, b]$. Assuming that each f_{n}^{\prime} is continuous, we can apply the first part of the Fundamental Theorem of Calculus (i.e., Theorem 7.5.1(i)) to obtain

$$
\int_{a}^{x} f_{n}^{\prime}=f_{n}(x)-f_{n}(a) \quad \text { for all } x \in[a, b]
$$

Show that $g(x)=f^{\prime}(x)$.
Remark: This provides a simple proof of the Differentiable Limit Theorem (Theorem 6.3.1) under the additional assumption that the derivatives f_{n}^{\prime} are continuous.

Problem 4. Let the function $L:(0, \infty)$ be defined by

$$
L(x)=\int_{1}^{x} \frac{1}{t} \mathrm{~d} t
$$

Pretend that you do not know anything about this function - the only thing that you are allowed to use in this problem is its definition.
(a) What is $L(1)$? Explain why L is differentiable and find $L^{\prime}(x)$.
(b) Show that $L(x y)=L(x)+L(y)$.

Hint: Think of y as constant and differentiate $g(x)=L(x y)$.
(c) Show that $L\left(\frac{x}{y}\right)=L(x)-L(y)$.
(d) One can easily show that the range of L is the whole real line, and from the definition of L we see that L is strictly increasing, so that it is invertible. Let $E: \mathbb{R} \rightarrow(0, \infty)$ be the inverse function of L, i.e., $E \circ L:(0, \infty) \rightarrow(0, \infty)$ and $L \circ E: \mathbb{R} \rightarrow \mathbb{R}$ are the identities on $(0, \infty)$ and \mathbb{R}, respectively.
Use the properties of L to find $E(0)$ and to prove the identity $E(x+y)=E(x) E(y)$.
(e) Use the Inverse Function Theorem (Exercise 5.2.12) to find an expression for $E^{\prime}(x)$.
(f) Let the sequence $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ be defined by

$$
\gamma_{n}=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)-L(n) .
$$

Prove that the sequence $\left(\gamma_{n}\right)$ converges. The constant

$$
\gamma=\lim \gamma_{n}=0.57721566490153286060651209008240243104215933593992 \ldots
$$

is called Euler's constant or Euler-Mascheroni constant.
(g) Show how consideration of the sequence $\left(\gamma_{2 n}-\gamma_{n}\right)$ leads to the identity

$$
L(2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots .
$$

Problem 5. Given a function $f:[a, b] \rightarrow \mathbb{R}$, define the total variation of f to be

$$
V_{a}^{b} f=\sup \left\{\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|\right\}
$$

where the supremum is taken over all partitions $P=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ of $[a, b]$.
(a) If f is continuously differentiable (i.e., f^{\prime} exists and is a continuous function), use the Fundamental Theorem of Calculus to show that $V_{a}^{b} f \leq \int_{a}^{b}\left|f^{\prime}\right|$.
(b) Use the Mean Value Theorem to establish the reverse inequality and conclude that $V_{a}^{b} f=\int_{a}^{b}\left|f^{\prime}\right|$.

Problem 6. In this problem you will prove the famous Contraction Mapping Theorem (often called Banach Contraction Mapping Theorem).
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function for which there exists a constant c such that $0<c<1$, and

$$
|f(x)-f(y)| \leq c|x-y|, \quad \forall x, y \in \mathbb{R}
$$

This can also be stated as saying that f is Lipschitz with Lipschitz constant <1. Geometrically speaking, this means that the distance between the images $f(x)$ and $f(y)$ is no greater than c times the distance between the original points x and y.
(a) Show that f is continuous on \mathbb{R}.
(b) Pick some point $y_{1} \in \mathbb{R}$ and construct the sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ iteratively by setting

$$
y_{n+1}=f\left(y_{n}\right) .
$$

Show that $\left(y_{n}\right)$ is a Cauchy sequence. This allows you to conclude that $\left(y_{n}\right)$ converges; let $y=\lim y_{n}$.
Hint: Show that $\left|y_{m+1}-y_{m+2}\right| \leq c^{m}\left|y_{1}-y_{2}\right|$, then use the formula for geometric series to show that, for any $m<n,\left|y_{m}-y_{n}\right| \leq \frac{c^{m-1}}{1-c}\left|y_{1}-y_{2}\right|$, and use this to prove that $\left(y_{n}\right)$ is Cauchy.
(c) Prove that y (defined in part (b)) is a fixed point of the function f, i.e., that

$$
f(y)=y .
$$

(d) Prove that y (defined in part (b)) is the unique fixed point of the function f. This implies, in particular, that for any $x \in \mathbb{R}$, the sequence of iterates $(x, f(x), f(f(x)), \ldots)$ converges to y.

Food for Thought: Aksoy \& Khamsi, Problem 7.19; Abbott, Exercises 7.5.2, 7.5.7.

