
MATH 4093/5093 Homework 8 Due Fri, 4/15/2011

Problem 1. The so-called error function, erf(x), of great importance in probability, statis-
tics and partial differential equations, is defined as

erf(x) :=
2√
π

∫ x

0

e−t
2

dt .

The integral in the definition of erf(x) cannot be expressed in terms of elementary functions,
so that the values of erf(x) must be found using some numerical method.

One way to do this is to use the Taylor expansion of erf(x). For example, the Taylor
polynomial of degree 7 around x = 0 of the function erf(x) is

T7(x) =
2x√
π
− 2x3

3
√
π

+
x5

5
√
π
− x7

21
√
π
.

(Think how one can compute the derivatives of erf(x).) The value of T7(1) is 52
35
√
π
≈

0.8382245241280951. Comparing this with the exact value, erf(1) ≈ 0.8427007929497149,
we see that the relative error is about 0.53 %. To achieve accuracy of about 10−16, one has
to use the Taylor polynomial T34(x) of erf(x) of degree 34, which is a daunting task (just try
to obtain T10(x), to get an idea about the length of the calculations; no need to attach your
calculations to the homework).

Another way to compute the values of the error function is to use numerical integration.
This is easy and straightforward to do, but we have not discussed it in the class so far, so
we won’t pursue it here.

In this problem you will find the value of erf(1) by solving an appropriate IVP for an ODE.
One can use any method for solving the IVP, but in this method you will use two Runge-
Kutta methods, whose codes are available at the class web-site.

(a) Write down a first-order ODE that erf(x) satisfies.

Hint: This question is equivalent to asking what the first derivative of erf(x) is.

(b) Think of an initial condition for erf(x). There is one value of x for which you know
erf(x) exactly.

(c) Compute the value of erf(1) by integrating the IVP formulated in parts (a) and (b)
using the MATLAB code mod_euler.m (implementing the modified Euler method,
which is a Runge-Kutta method of order 2). Do this for stepsizes h = 1

10
, 1

100
, 1

1000

and 1
10000

. Write down the value of the absolute error for each h (there is no need to
attach your printout). What does the dependence of the absolute error on h seem to
be? Does your empirical observation agree with what you expected?

Remark: The function erf(x) exists in MATLAB – to get the value of erf(1), simply
type erf(1).

1

(d) Do the same as in part (c), but using the MATLAB code rk4.m (which implements
the classical Runge-Kutta method of order 4), and only for N = 10 and 100 (simply
because for N = 1000 the numerical error will be of order of the “machine epsilon”;
you can find the machine epsilon in MATLAB by typing eps and pressing enter).
Again, discuss your findings about the error in the light of the theoretical predictions.

Problem 2. In this problem you will study in detail the piecewise-linear interpolation of
the function f(x) = 1

x
on the interval [1, 2], and then on the interval [1, 4]. Piecewise-linear

interpolation of a function uses linear interpolation between each pair of consecutive values
of the argument. For example, to find the piecewise-linear interpolant of f(x) = 1

x
based on

its values at x = 1, 2, and 4, you have to compute the Lagrange interpolation polynomial
of degree 1 whose graph passes through the points (1, f(1)) and (2, f(2)), and the Lagrange
interpolation polynomial of degree 1 whose graph passes through (2, f(2)) and (4, f(4));
these two Lagrange polynomials together constitute the desired piecewise-linear interpolant
of the function f(x) = 1

x
. The graphs of the function f(x) = 1/x and its piecewise-linear

interpolant are shown in Figure 1.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4

line 1
line 2
line 3

Figure 1: Piecewise-linear interpolation of f(x) = 1/x on the interval [1, 4] by using the
values of f(x) for x = 1, 2, and 4.

(a) Find the first-degree Lagrange polynomial P1(x) of f(x) = 1
x

that passes through the
points (1, f(1)) and (2, f(2)).

(b) Let Etrue on [1,2] := max
x∈[1,2]

|f(x)− P1(x)| be the true error of the first-degree Lagrange

interpolation. Find the numerical value of Etrue on [1,2] “by paper and pencil”.

Hint: You first have to find the value x∗ of the argument that maximizes the expression
|f(x)−P1(x)|. Note that f is concave up, so that the graph of P1 lies above the graph
of f , therefore |f(x)− P1(x)| = P1(x)− f(x).

(c) Find the rigorous upper bound Erig, [1,2] of the error of the linear interpolation on [1, 2]
given by the Theorem 3.3 on page 348 of the book. Note that you do not know the

2

value of ξ in this bound, so you will have to take the maximum of the absolute value of
the derivative in this bound over the whole interval [1, 2]. Separately, you will have to
find the maximum value of the absolute value of the product of (x−xi) terms (look at
the sign of each (x− xi) and get rid of the absolute values before taking derivatives).
In other words, you have to find

Erig, [1,2] =
1

(n+ 1)!
max
ξ∈[1,2]

|fn+1(ξ)| max
x∈[1,2]

n∏
k=0

|x− xk| .

Find the exact numerical value of this bound, and compare it with the exact value of
the error found in part (b).

(d) Now find the Lagrange interpolating polynomial of f over the interval [2, 4], and write
your results from parts (a) and (c) together in the form

Ppiece−lin(x) =

{
b1x+ c1 , x ∈ [1, 2] ,

b2x+ c2 , x ∈ [2, 4] .

Remark: It is easy to check your results: the piecewise-linear interpolant must be a
linear function on [1, 2] and [2, 4] and must satisfy Ppiece−lin(1) = f(1), Ppiece−lin(2) =
f(2), Ppiece−lin(4) = f(4).

(e) Use your result from part (d) to compute Ppiece−lin(1.25); compare it with f(1.25).

Problem 3. This problem is a continuation of the previous one.

(a) One can use interpolants in approximate computations. For example, we can use the
piecewise-linear interpolant of a function to obtain an approximate the integral of a
function over an interval. Use the piecewise-linear interpolant Ppiece−lin(x) found in

part (d) of the previous problem to approximate
∫ 4

1
f(x) dx by

∫ 4

1
Ppiece−lin(x) dx.

(b) In part (b) of the previous problem you found the rigorous upper bound Erig, [1,2] on
the error in interpolating f by a linear function on [1, 2]. I computed the rigorous
upper bound Erig, [2,4] on the error in interpolating f by a linear function on [2, 4], and
found that Erig, [2,4] = 1

8
. Use the values of Erig, [1,2] and Erig, [2,4] to find a rigorous upper

bound on the error
∣∣∣∫ 4

1
f(x) dx−

∫ 4

1
Ppiece−lin(x) dx

∣∣∣.
Hint: You can use the following standard mathematical tricks:∣∣∣∫ 4

1
g(x) dx

∣∣∣ ≤ ∫ 4

1
|g(x)| dx =

∫ 2

1
|g(x)| dx+

∫ 4

2
|g(x)| dx .

(c) Compute the true value of
∣∣∣∫ 4

1
f(x) dx−

∫ 4

1
Ppiece−lin(x) dx

∣∣∣ and compare it with the

rigorous upper bound found in part (b).

3

Problem 4. To make Figure 1, I used the MATLAB code lagrange.m, which in turn
calls the MATLAB code lagrange_poly.m (both available at the class web-site). The code
lagrange.m takes the values xi and yi = f(xi) (for i = 0, 1, . . . , n), and returns the coeffi-
cients of the Lagrange polynomial Pn of degree n that interpolates f , i.e., such that

Pn(xj) = f(xj) for j = 0, 1, . . . , n .

The code lagrange_poly.m constructs the polynomial Ln,j associated with the jth interpo-
lating point (xj, yj) of a given set {(xi, yi)}ni=0 of interpolating points.

Here is how you use these two MATLAB codes. Save the values of xj as a vector xx, and
the values of f(xj) as a vector yy. Then type, say, lagr=lagrange(xx,yy), and you will
obtain the values of the coefficients of the Lagrange polynomial Pn(x) = anx

n + an−1x
n−1 +

· · · + a1x + a0. Suppose that you want to compute the Lagrange interpolating polynomial
P2(x) of the function f(x) = 1/x based on the values of f(x) for x = 1, 2, and 4. Type

xx = [1 2 4]

yy = 1.0 ./ xx

lagr = lagrange(xx,yy)

(to recall what the command ./ does, type help ./). These commands define the vector
lagr whose components are lagr(1) = 0.125, lagr(2) = −0.875, and lagr(3) = 1.75. This
means that P2(x) = 0.125x2 − 0.875x + 1.75. To obtain, say, the value P2(3.1), you can
type polyval(lagr,3.1) – see more about the command polyval in Section 11 of Ed
Overman’s MATLAB Overview (available at the class web-site). I made Figure 1 by typing

x_dense = linspace(1.0, 4.0, 401);

y_dense = 1.0 ./ x_dense;

plot(x_dense,y_dense,’r’) % plotting y=1/x on [1,4]

hold on

xx = [1 2]

yy = 1.0 ./ xx

lagr = lagrange(xx, yy)

polyval(lagr, 1.0) % just a test

polyval(lagr, 2.0) % just a test

polyval(lagr, 1.5) % just a test

x_dense = linspace(1.0, 2.0, 101);

plot (x_dense, polyval(lagr, x_dense),’g’) % plotting the Lagr poly on [1,2]

xx = [2 4]

yy = 1.0 ./ xx

lagr = lagrange(xx, yy)

x_dense = linspace(2.0, 4.0, 101);

plot (x_dense, polyval(lagr, x_dense),’b’) % plotting the Lagr poly on [2,4]

In MATLAB there are more sophisticated commands to deal with plots, like fplot, ezplot,
etc. – see Section 4.1 of Overman’s text and MATLAB’s help menu.

In this simple problem you have to use the codes lagrange.m and lagrange_poly.m in order
to compute and then plot the interpolating polynomial of a certain set of points, which will

4

be a good illustration of the dangers of using polynomial interpolation with polynomials of
high degrees. Consider the set of points {(xi, yi)}11i=0, where xi = i (i = 0, 1, . . . , 11), and

yi =

{
xi for i = 0, 1, . . . , 5 ,
xi + 1 for i = 6, 7, . . . , 11 .

Save the x-coordinates xi in a vector x, and the y-coordinates yi in a vector y. Then use
the code lagrange.m to find the coefficients of the Lagrange interpolating polynomial, and
finally plot the points {(xi, yi)}11i=0 (using circles) and the interpolating polynomial (using
straight lines). Attach the printout of your MATLAB session and the plot of the points and
the interpolating polynomial. Discuss briefly what you observe and what conclusions you
can draw.

Problem 5. The MATLAB code ab4.m from the class web-site implements the 4-step
4th-order Adams-Bashforth method (AB4) given by

wi+1 = wi +
h

24

[
55 f(ti, wi)− 59 f(ti−1, wi−1) + 37 f(ti−2, wi−2)− 9 f(ti−3, wi−3)

]
.

Modify this code to create the code yourfirstname_yourfamilyname_pred_corr_4.m that
implements the predictor-corrector method based on the AB4 method above and the 3-step
4th-order Adams-Moulton method (AM3) given by

wi+1 = wi +
h

24

[
9 f(ti+1, wi+1) + 19 f(ti, wi)− 5 f(ti−1, wi−1) + f(ti−2, wi−2)

]
.

(a) Attach a printout of your MATLAB code and upload it in the Dropbox of D2L.

(b) Test your code on the initial-value problem

y′(t) = −y + sin t , t ∈ [π, 2π] ,

y(π) = 1 ,

whose exact solution is yexact(t) = 1
2

(eπ−t + sin t− cos t). Compute the error |y(2π)−
yexact(2π)| for N = 10, 100, 1000; here N is the number of intervals in which the interval
[π, 2π] is divided, i.e., the last argument of the function ab4 (note that the arrays wi

and ti created by ab4.m are of size N + 1). Attach a printout of your MATLAB
session.

5

