MATH 3423 Homework 8 Due Mon, 11/7/16

Problem 1. Let V},(a, b; w(x)) stand for the linear space of polynomials of degree no greater than n
endowed with the inner product

b
(P.Q) = / P(z) Q(z) w(z) dz

We want to construct polynomials Py, P, ..., P, satisfying the following conditions:
(i) the polynomial Py is of degree k;
(ii) then coefficient of z* in P is equal to 1 (such polynomials are called monic);

(iii) the polynomials Py, Py, P, ..., P, form an orthogonal basis in the space of polynomials
Vi (0, 00; w(z) = e~ %).

In the solution of this problem the following identity will be handy:

/ 2P e T dx = k!
0

(where, by definition, 0! = 1).

(a) Clearly, Py(xz) =1 for each = € [0,00). Find the only monic polynomial P; of degree 1 that is
orthogonal to Py. Clearly, P; should have the form Pj(x) = x+«, where « is a constant whose
value you have to find. (The coefficient multiplying z is 1 because we want the polynomials
Py to be monic.)

(b) Find the only monic quadratic polynomial P, that is orthogonal to both Py and P;. The
polynomial P, should have the form Pj(z) = 22 + 3z + 1, where 3 and ~y are constants whose
values you have to find. (Hint: I obtained that v = 2.)

(c) Show that the polynomial Q(x) = 2% + 3 can be represented as a linear combination of the
polynomials Py, P, and P, as follows: Q = P, +4P; +5F,.
(d) Show by direct integration that (Py, Po) =1, (P1, P1) =1, (P, P) = 4.
e) Find the orthogonal projection, proj Q, of the polynomial Q(z) = z2 + 3 onto the “
Po+2P;
straight line”
{ .= {t(PO + 2P1) ‘ t e R}

in the 3-dimensional inner product linear space V5(0,00;e~*). If you have solved part (c),
then finding this orthogonal projection should be easy.

Hint: If u and v are vectors in the inner product linear space V', then the orthogonal projection
of the vector u onto the straight line in the direction of v is the vector

(u,v)

proj,u = v

(v, v)



— see the picture below.

(f) Finally, let Py, := py Py, where p > 0 is a constant (depending on k) such that the norm,

[l BT

of the polynomial Py is 1. Find the explicit expressions for Py(z), Pi(z), and Py(z).

Problem 2.
(a) Prove that (AB)T = BT A”.

(b) Directly from the definition of orthogonality of matrices (for the case of Euclidean inner
product), i.e., éTé = I, prove that the product of two orthogonal matrices is orthogonal.

Problem 3. Let the linear operator in the 2-dimensional vector space V with basis fi, f5, be
defined by

Afy = —f; +4fy
Afy =] + 2f5 .
(a) Write down the matrix A of the linear operator A in the basis fi, fo.

(b) Compute the eigenvalues and the eigenvectors of this matrix.

1
B 1). Here you only

have to find an eigenvector us. As you know, us is not uniquely defined; choose us it in such
a way that its first component be equal to 1.

Remark: In class we wrote é and found that A\ = =2, Ay = 3, u; = (

(¢) Now you know that
w =6 —f,

llng1+(?)f2 .

1
Express the original basis vectors f; = (O) and fy = (?) in terms of the eigenvectors uy

and uy. (Do not use any “canned” formulas, just do the obvious calculations.)



(d) Use the relations
u =f —f,
uy = f] + (?) 5

obtained in part (b), and the relations

4
f1:5u1—|—(?)u2,

1
f2=<?)111+gu2

obtained in part (c), as well as the definition of the linear operator A in the statement of
the problem (i.e., the action of A on the basis fj, f3), to express Au; and Aug in terms of
u; and us. At the end the result will be totally obvious, but I want to see your detailed
calculations.

(e) Since the eigenvalues of the matrix A are real and distinct, a theorem guarantees that the

eigenvectors of the linear operator A form a basis of the linear space V. Let é = (a;j) be the

2
matrix of the linear operator A in the basis uy, uo, i.e., Au; = Zaij u;. Find the entries a;;
i=1
of the matrix A.
Remark: The result will be obvious, but I want to see all calculations that I am asking you
to perform.

1 -1
Problem 4. Determine the eigenvalues and eigenvectors of the matrix A = ( 1 3 > How

many linearly independent eigenvectors does it have?

Remark: This problem shows the trouble one may encounter in the case of repeated eigenvalues.

Problem 5. Express the coefficients of the characteristic polynomial, det(A — AI), of the matrix
A= ( CCL 2 ) in terms of det A and tr A.

Food for thought: The eigenvalues of an operator A should not depend on the choice of basis (because
their definition did not require a choice of basis). On the other hand, the eigenvalues are roots of
the characteristic equation det(A — AI) = 0, which depends on the choice of basis in V' (because in
different bases the matrix A of the linear operator A looks different). We know from the handout
Change of basis in a linear space (linked at Lecture 26) that, if the change of basis is defined by
the (invertible) matrix A, then the matrix A of the operator A in the new basis is related to the

matrix A of the operator in the old basis by é = gég_l. This poses the question whether the
characteristic polynomials det(A — AI) and det(é — ) are the same (as functions of A). Recalling



the property det(A B) = det(A) det(B) (which also implies that det(A™") = (det A)~'), we obtain

det(A — M) = det(CAC™' — \) = det(CAC™' —ACIC™)

=det (C(A— A)C ") = det(C) det(A — AI) det(C ") = det(A — AI) ,

therefore the characteristic equations for the matrix of the operator A does not depend on the basis.
One can also check that the determinant and the trace of the matrix of a linear operator A do not
depend on the choice of basis. As you had to show in this problem, the characteristic equation
has det A and tr A as coefficients. One can use the property of determinants to show that the
determinant does not depend on the choice of basis:

det(A) = det(CAC™) = det C det A det(C ') = det C det A(detC) ™' = det A .

As for the trace, one can easily prove that

tw(ABCD) = tr(BCDA) = tr (CDAB) = tx (DABC)

(cyclic permutation of the product the matrices in the trace; analogous formula holds for the trace
of the product of any number of matrices, not only four matrices as in this equality). Therefore

tr(CACT) = tr (ACT'C) = tr (AD)=tr (4) .

All this provides another proof that the eigenvalues of a 2 x 2 matrix does not depend on the choice
of a basis.



