
MATH 3423 Homework 8 Due Mon, 11/7/16

Problem 1. Let Vn(a, b;w(x)) stand for the linear space of polynomials of degree no greater than n
endowed with the inner product

〈P,Q〉 =

∫ b

a
P (x)Q(x)w(x) dx .

We want to construct polynomials P0, P1, . . ., Pn satisfying the following conditions:

(i) the polynomial Pk is of degree k;

(ii) then coefficient of xk in Pk is equal to 1 (such polynomials are called monic);

(iii) the polynomials P0, P1, P2, . . ., Pn form an orthogonal basis in the space of polynomials
Vn(0,∞;w(x) = e−x).

In the solution of this problem the following identity will be handy:∫ ∞
0

xk e−x dx = k!

(where, by definition, 0! = 1).

(a) Clearly, P0(x) = 1 for each x ∈ [0,∞). Find the only monic polynomial P1 of degree 1 that is
orthogonal to P0. Clearly, P1 should have the form P1(x) = x+α, where α is a constant whose
value you have to find. (The coefficient multiplying x is 1 because we want the polynomials
Pk to be monic.)

(b) Find the only monic quadratic polynomial P2 that is orthogonal to both P0 and P1. The
polynomial P2 should have the form P1(x) = x2 +βx+γ, where β and γ are constants whose
values you have to find. (Hint: I obtained that γ = 2.)

(c) Show that the polynomial Q(x) = x2 + 3 can be represented as a linear combination of the
polynomials P0, P1 and P2 as follows: Q = P2 + 4P1 + 5P0.

(d) Show by direct integration that 〈P0, P0〉 = 1, 〈P1, P1〉 = 1, 〈P2, P2〉 = 4.

(e) Find the orthogonal projection, projP0+2P1
Q, of the polynomial Q(x) = x2 + 3 onto the “

straight line”
` := {t(P0 + 2P1) | t ∈ R}

in the 3-dimensional inner product linear space V2(0,∞; e−x). If you have solved part (c),
then finding this orthogonal projection should be easy.

Hint: If u and v are vectors in the inner product linear space V , then the orthogonal projection
of the vector u onto the straight line in the direction of v is the vector

projvu =
〈u,v〉
〈v,v〉

v
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– see the picture below.

projv u

u

v

(f) Finally, let P̃k := µkPk, where µk > 0 is a constant (depending on k) such that the norm,∥∥∥P̃k

∥∥∥ :=

√〈
P̃k, P̃k

〉
,

of the polynomial P̃k is 1. Find the explicit expressions for P̃0(x), P̃1(x), and P̃2(x).

Problem 2.

(a) Prove that (AB)T = BTAT .

(b) Directly from the definition of orthogonality of matrices (for the case of Euclidean inner
product), i.e., ATA = I, prove that the product of two orthogonal matrices is orthogonal.

Problem 3. Let the linear operator in the 2-dimensional vector space V with basis f1, f2, be
defined by

Af1 = −f1 + 4f2 ,

Af2 = f1 + 2f2 .

(a) Write down the matrix A of the linear operator A in the basis f1, f2.

(b) Compute the eigenvalues and the eigenvectors of this matrix.

Remark: In class we wrote A and found that λ1 = −2, λ2 = 3, u1 =
( 1
−1

)
. Here you only

have to find an eigenvector u2. As you know, u2 is not uniquely defined; choose u2 it in such
a way that its first component be equal to 1.

(c) Now you know that

u1 = f1 − f2 ,

u2 = f1 + (?) f2 .

Express the original basis vectors f1 =
(1

0

)
and f2 =

(0
1

)
in terms of the eigenvectors u1

and u2. (Do not use any “canned” formulas, just do the obvious calculations.)
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(d) Use the relations

u1 = f1 − f2 ,

u2 = f1 + (?) f2

obtained in part (b), and the relations

f1 =
4

5
u1 + (?)u2 ,

f2 = (?)u1 +
1

5
u2

obtained in part (c), as well as the definition of the linear operator A in the statement of
the problem (i.e., the action of A on the basis f1, f2), to express Au1 and Au2 in terms of
u1 and u2. At the end the result will be totally obvious, but I want to see your detailed
calculations.

(e) Since the eigenvalues of the matrix A are real and distinct, a theorem guarantees that the

eigenvectors of the linear operator A form a basis of the linear space V . Let Ã = (ãij) be the

matrix of the linear operator A in the basis u1, u2, i.e., Auj =
2∑

i=1

ãij ui. Find the entries ãij

of the matrix Ã.

Remark: The result will be obvious, but I want to see all calculations that I am asking you
to perform.

Problem 4. Determine the eigenvalues and eigenvectors of the matrix A =

(
1 −1
1 3

)
. How

many linearly independent eigenvectors does it have?

Remark: This problem shows the trouble one may encounter in the case of repeated eigenvalues.

Problem 5. Express the coefficients of the characteristic polynomial, det(A − λI), of the matrix

A =

(
a b
c d

)
in terms of detA and trA.

Food for thought: The eigenvalues of an operator A should not depend on the choice of basis (because
their definition did not require a choice of basis). On the other hand, the eigenvalues are roots of
the characteristic equation det(A− λI) = 0, which depends on the choice of basis in V (because in
different bases the matrix A of the linear operator A looks different). We know from the handout
Change of basis in a linear space (linked at Lecture 26) that, if the change of basis is defined by
the (invertible) matrix A, then the matrix Ã of the operator A in the new basis is related to the

matrix A of the operator in the old basis by Ã = C AC−1. This poses the question whether the

characteristic polynomials det(A−λI) and det(Ã−λI) are the same (as functions of λ). Recalling
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the property det(AB) = det(A) det(B) (which also implies that det(A−1) = (detA)−1), we obtain

det(Ã− λI) = det(C AC−1 − λI) = det(C AC−1 − λC I C−1)

= det
(
C(A− λI)C−1

)
= det(C) det(A− λI) det(C−1) = det(A− λI) ,

therefore the characteristic equations for the matrix of the operator A does not depend on the basis.

One can also check that the determinant and the trace of the matrix of a linear operator A do not
depend on the choice of basis. As you had to show in this problem, the characteristic equation
has detA and trA as coefficients. One can use the property of determinants to show that the
determinant does not depend on the choice of basis:

det(Ã) = det(C AC−1) = detC detA det(C−1) = detC detA (detC)−1 = detA .

As for the trace, one can easily prove that

tr
(
ABC D

)
= tr

(
BC DA

)
= tr

(
C DAB

)
= tr

(
DABC

)
(cyclic permutation of the product the matrices in the trace; analogous formula holds for the trace
of the product of any number of matrices, not only four matrices as in this equality). Therefore

tr
(
C AC−1) = tr

(
AC−1C) = tr

(
AI
)
= tr

(
A
)
.

All this provides another proof that the eigenvalues of a 2×2 matrix does not depend on the choice
of a basis.
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