Problem 1. [Green function for Dirichlet BVP for Poisson equation in half-ball]

In this problem you will use the methods of electrostatic images to construct the Green function for the Dirichlet boundary value problem for Poisson equation in a half-ball of radius R in \mathbb{R}^{3}, i.e., a function $G(\mathbf{x}, \mathbf{y})$ satisfying

$$
\begin{aligned}
-\Delta_{\mathbf{y}} G(\mathbf{x}, \mathbf{y}) & =\delta_{\mathbf{x}}(\mathbf{y}), & & \text { for } \mathbf{y} \in \Omega \\
G(\mathbf{x}, \mathbf{y}) & =0, & & \text { for } \mathbf{y} \in \partial \Omega
\end{aligned}
$$

where $\Omega:=\left\{\mathbf{x} \in \mathbb{R}^{3}:|\mathbf{x}|<R, x_{3}>0\right\}$ is the half-ball of radius R in \mathbb{R}^{3}, and $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ is an arbitrary point in Ω (i.e., $x_{1}^{2}+x_{2}^{2}<R^{2}$ and $x_{3}>0$). Please follow the steps below.
(a) Let \mathbf{y} be a point on the flat part of $\partial \Omega$, i.e., $\mathbf{y}=\left(y_{1}, y_{2}, 0\right)$ with $y_{1}^{2}+y_{2}^{2}<R^{2}$. To make sure that $G(\mathbf{x}, \mathbf{y})=0$, you have to place an image charge at the point $\mathbf{x}^{*}=\left(x_{1}, x_{2},-x_{3}\right)$. Draw a picture indicating the position of \mathbf{x} and \mathbf{x}^{*}.
(b) Now ignore the image charge at \mathbf{x}^{*}. If we only had the charge at the point \mathbf{x}, at what position $\overline{\mathbf{x}}$ would you place an image charge so that the potential of both charges is zero on the sphere of radius R ? In other words, if at the point \mathbf{y} the potential due to the charges at \mathbf{x} and at $\overline{\mathbf{x}}$ is $G(\mathbf{x}, \mathbf{y})$, then $G(\mathbf{x}, \mathbf{y})$ must be zero when $\mathbf{y} \in \partial B_{R}(\mathbf{0})$. Draw a picture indicating the position of of \mathbf{x} and $\overline{\mathbf{x}}$.
(c) Draw a picture with the charges at $\mathbf{x}, \mathbf{x}^{*}$, and $\overline{\mathbf{x}}$. If both image charges (from part (a) and from part (b)) are present, then $G(\mathbf{x}, \mathbf{y})$ does not vanish when $\mathbf{y} \in \partial \Omega$ (why?). However, you can place only one more image charge at certain point - let's denote it by $\overline{\mathbf{x}}^{*}$ - so that if the value $G(\mathbf{x}, \mathbf{y})$ at $\mathbf{y} \in \bar{\Omega}$ of the potential due to the "true" charge at $\mathbf{x} \in \Omega$ and the three image charges at $\mathbf{x}^{*} \notin \Omega, \overline{\mathbf{x}} \notin \Omega$, and $\overline{\mathbf{x}}^{*} \notin \Omega$, then $G(\mathbf{x}, \mathbf{y})=0$ when $\mathbf{y} \in \partial \Omega$. Please draw a picture with the locations of $\mathbf{x}, \mathbf{x}^{*}, \overline{\mathbf{x}}$, and $\overline{\mathbf{x}}^{*}$, write explicitly $\overline{\mathbf{x}}^{*}$ and the image charge you have to place at this point.
(d) Write down the Green function $G(\mathbf{x}, \mathbf{y})$ constructed above.
(e) Write down the corresponding Poisson kernel,

$$
P(\mathbf{x}, \mathbf{y})=-\left.\frac{\partial G}{\partial \nu_{\mathbf{y}}}(\mathbf{x}, \mathbf{y})\right|_{\mathbf{y} \in \partial \Omega}
$$

when \mathbf{y} belongs to the flat part of $\partial \Omega$. (Of course, one can also write $P(\mathbf{x}, \mathbf{y})$ for \mathbf{y} in the curved part of $\partial \Omega$, but the calculations are too tedious.)
(f) If $G(\mathbf{x}, \mathbf{y})$ and $P(\mathbf{x}, \mathbf{y})$ are the Green function and the Poisson kernel obtained above, write down the solution $u(\mathbf{x})$ of the boundary value problem (just write down the abstract expressions)

$$
\begin{aligned}
-\Delta u(\mathbf{x}) & =f(\mathbf{x}), & & \text { for } \mathbf{x} \in \Omega \\
u(\mathbf{x}) & =g(\mathbf{x}), & & \text { for } \mathbf{x} \in \partial \Omega
\end{aligned}
$$

Problem 2. [Poisson formula in the disk (2-dimensional ball) of radius R]

In Problem 5 of Homework 5 you proved that the function

$$
\begin{equation*}
\Phi(\mathbf{x})=-\frac{1}{2 \pi} \ln |\mathbf{x}|, \quad \mathbf{x} \in \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

is a fundamental solution of $-\Delta$ in \mathbb{R}^{2}, i.e.,

$$
-\Delta \Phi(\mathrm{x})=\delta(\mathrm{x}), \quad \mathrm{x} \in \mathbb{R}^{2}
$$

In this problem you will use this fact and the method of electrostatic images to show that the Green function of the Dirichlet boundary value problem for the Poisson equation in a disk $B_{R}(\mathbf{0})$ of radius R centered in the origin of \mathbb{R}^{2} is equal to

$$
\begin{equation*}
G(\mathbf{x}, \mathbf{y})=\Phi(\mathbf{x}-\mathbf{y})-\Phi\left(\frac{|\mathbf{x}|}{R}\left(\mathbf{x}^{*}-\mathbf{y}\right)\right)=\frac{1}{2 \pi} \ln \frac{|\mathbf{x}|\left|\mathbf{x}^{*}-\mathbf{y}\right|}{R|\mathbf{x}-\mathbf{y}|} \tag{2}
\end{equation*}
$$

where $\mathbf{x}^{*}=\frac{R^{2}}{|\mathbf{x}|^{2}} \mathbf{x}$ is the image of \mathbf{x} under inversion (note that $\mathbf{x}^{*} \notin B_{R}(\mathbf{0})$), and $\Phi(\mathbf{x})$ is the fundamental solution of the operator $-\Delta$ given by (1).
(a) Explain why, for an arbitrary $\mathbf{x} \in B_{R}(\mathbf{0})$, the function $G(\mathbf{x}, \mathbf{y})$ given by (2) satisfies

$$
-\Delta_{\mathbf{y}} G(\mathbf{x}, \mathbf{y})=\delta_{\mathbf{x}}(\mathbf{y}), \quad \mathbf{y} \in B_{R}(\mathbf{y})
$$

(b) Check by a direct calculation that, if \mathbf{x} is an arbitrary point in $B_{R}(\mathbf{0}), \mathbf{x}^{*}$ is its image under inversion, and $\mathbf{y} \in \partial B_{R}(\mathbf{0})$, then

$$
\frac{|\mathbf{x}-\mathbf{y}|^{2}}{\left|\mathbf{x}^{*}-\mathbf{y}\right|^{2}}=\frac{|\mathbf{x}|^{2}}{R^{2}},
$$

and explain why this implies that $G(\mathbf{x}, \mathbf{y})$ is zero for $\mathbf{y} \in \partial B_{R}(\mathbf{0})$.
(c) Let \mathbf{x} and \mathbf{y} have polar coordinates (r, θ) and (ρ, α), respectively, i.e.,

$$
\mathbf{x}=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}, \quad \mathbf{y}=\rho \cos \alpha \mathbf{i}+\rho \sin \alpha \mathbf{j}
$$

(where \mathbf{i} and \mathbf{j} are the unit vectors in positive x - and y-directions, respectively). Show that the expression (2) for $G(\mathbf{x}, \mathbf{y})$ can be written as

$$
G(\mathbf{x}, \mathbf{y})=\frac{1}{4 \pi} \ln \frac{R^{4}+r^{2} \rho^{2}-2 R^{2} r \rho \cos (\theta-\alpha)}{R^{2}\left[r^{2}+\rho^{2}-2 r \rho \cos (\theta-\alpha)\right]}
$$

(d) Show that the Poisson kernel (cf. Salsa's book, page 137) is

$$
P(\mathbf{x}, \mathbf{y}):=-\left.\frac{\partial G}{\partial \nu_{\mathbf{y}}}(\mathbf{x}, \mathbf{y})\right|_{\mathbf{y} \in \partial B_{R}(\mathbf{0})}=-\left.\frac{\partial G}{\partial \rho}(\mathbf{x}, \mathbf{y})\right|_{\rho=R}=\frac{1}{2 \pi R} \frac{1-\left(\frac{r}{R}\right)^{2}}{\left(\frac{r}{R}\right)^{2}+1-2 \frac{r}{R} \cos (\theta-\alpha)},
$$

where $\mathbf{x} \in B_{R}(\mathbf{0}), \mathbf{y} \in \partial B_{R}(\mathbf{0})$.
(e) Use the expressions derived above to write down the solution of the boundary value problem

$$
\begin{aligned}
\Delta u(\mathbf{x}) & =0, & & \text { for } \mathbf{x} \in B_{R}(\mathbf{0}) \\
u(\mathbf{x}) & =g(\theta), & & \text { for } \mathbf{x} \in \partial B_{R}(\mathbf{0})
\end{aligned}
$$

where (r, θ) are the polar coordinates of the point \mathbf{x}.

Problem 3. [Translation operator on $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$]

Let $\mathbf{v} \in \mathbb{R}^{n}$, and define the operator $E_{\mathbf{v}}$ on $\mathscr{D}\left(\mathbb{R}^{n}\right)$ by $\left(E_{\mathbf{v}} \phi\right)(\mathbf{x}):=\phi(\mathbf{x}-\mathbf{v})$. It is easy to show that E_{v} is bijective (one-to-one and onto) from $\mathscr{D}\left(\mathbb{R}^{n}\right)$ to $\mathscr{D}\left(\mathbb{R}^{n}\right)$. Define the operator $E_{\mathbf{v}}$ on $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ as follows: $\left\langle E_{\mathbf{v}} F, \phi\right\rangle:=\left\langle F, \circ E_{-\mathbf{v}} \phi\right\rangle$ for any $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$. We give such a definition (with $-\mathbf{v}$) so that if F is a regular distribution, i.e., related to some $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ by $\langle F, \phi\rangle=\int_{\mathbb{R}} f(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d} x$, then $E_{\mathbf{v}} F$ will correspond to the function $E_{\mathbf{v}} f$: indeed,

$$
\begin{aligned}
\left\langle E_{\mathbf{v}} F, \phi\right\rangle & =\left\langle F, E_{-\mathbf{v}} \phi\right\rangle=\int_{\mathbb{R}} f(\mathbf{x})\left(E_{-\mathbf{v}} \phi\right)(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\mathbb{R}} f(\mathbf{x}) \phi(\mathbf{x}+\mathbf{v}) \mathrm{d} \mathbf{x} \\
& =\int_{\mathbb{R}} f(\mathbf{y}-\mathbf{v}) \phi(\mathbf{y}) \mathrm{d} \mathbf{y}=\int_{\mathbb{R}}\left(E_{\mathbf{v}} f\right)(\mathbf{y}) \phi(\mathbf{y}) \mathrm{d} \mathbf{y}
\end{aligned}
$$

(a) Show that the mapping $E_{\mathbf{v}}: \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is linear.
(b) Show that $E_{\mathbf{v}}: \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is a continuous mapping.
(c) Show that the mapping $E_{\mathbf{v}}: \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is injective, i.e., that if $E_{\mathbf{v}} F=E_{\mathbf{v}} G$ for $F, G \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$, then $F=G$.
(d) Show that the mapping $E_{\mathbf{v}}: \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is surjective, i.e., that for every $F \in$ $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ there is $G \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ such that $E_{\mathbf{v}} G=G$.

Problem 4. [Fundamental solution in $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$]

A fundamental solution of a differential operator $A=\sum_{|\alpha| \leq m} c_{\boldsymbol{\alpha}} D^{\boldsymbol{\alpha}}$ (where $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multiindex, and $\left.|\boldsymbol{\alpha}|=\alpha_{1}+\cdots+\alpha_{n}\right)$ is a distribution $T \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ such that $A T=\sum_{|\boldsymbol{\alpha}| \leq m} c_{\boldsymbol{\alpha}} D^{\alpha} T=\delta$.
(a) Use what you know about convolution to show that if T is a fundamental solution of the operator A in $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$, then $A(T * \phi)=\phi$ for all $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$.
(b) Find a fundamental solution of the operator $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$ in $\mathscr{D}^{\prime}(\mathbb{R})$. Look for it in the form

$$
\langle T, \phi\rangle=\int_{\mathbb{R}} f(x) H(x) \phi(x) \mathrm{d} x=\int_{0}^{\infty} f(x) \phi(x) \mathrm{d} x, \quad \phi \in \mathscr{D}(\mathbb{R})
$$

where $f \in C^{2}(\mathbb{R})$ and H is the Heaviside function, and show that f is the solution of the initial value problem $f^{\prime \prime}(x)=0$ for $x \in(0, \infty), f(0)=0, f^{\prime}(0)=1$, whose solution is easy to find.

