
MATH 5163 Homework 7 Due Fri, 3/6/14, 5 p.m.

Problem 1. [Green function for Dirichlet BVP for Poisson equation in half-ball]

In this problem you will use the methods of electrostatic images to construct the Green
function for the Dirichlet boundary value problem for Poisson equation in a half-ball of
radius R in R3, i.e., a function G(x,y) satisfying

−∆yG(x,y) = δx(y) , for y ∈ Ω ,

G(x,y) = 0 , for y ∈ ∂Ω ,

where Ω ∶= {x ∈ R3 ∶ ∣x∣ < R, x3 > 0} is the half-ball of radius R in R3, and x = (x1, x2, x3) is
an arbitrary point in Ω (i.e., x2

1 + x
2
2 < R

2 and x3 > 0). Please follow the steps below.

(a) Let y be a point on the flat part of ∂Ω, i.e., y = (y1, y2,0) with y2
1 + y

2
2 < R

2. To make
sure that G(x,y) = 0, you have to place an image charge at the point x∗ = (x1, x2,−x3).
Draw a picture indicating the position of x and x∗.

(b) Now ignore the image charge at x∗. If we only had the charge at the point x, at what
position x would you place an image charge so that the potential of both charges is
zero on the sphere of radius R? In other words, if at the point y the potential due to
the charges at x and at x is G(x,y), then G(x,y) must be zero when y ∈ ∂BR(0).
Draw a picture indicating the position of of x and x.

(c) Draw a picture with the charges at x, x∗, and x. If both image charges (from part (a)
and from part (b)) are present, then G(x,y) does not vanish when y ∈ ∂Ω (why?).
However, you can place only one more image charge at certain point – let’s denote it
by x∗ – so that if the value G(x,y) at y ∈ Ω of the potential due to the “true” charge at
x ∈ Ω and the three image charges at x∗ ∉ Ω, x ∉ Ω, and x∗ ∉ Ω, then G(x,y) = 0 when
y ∈ ∂Ω. Please draw a picture with the locations of x, x∗, x, and x∗, write explicitly
x∗ and the image charge you have to place at this point.

(d) Write down the Green function G(x,y) constructed above.

(e) Write down the corresponding Poisson kernel,

P (x,y) = −
∂G

∂νy
(x,y)∣

y∈∂Ω

when y belongs to the flat part of ∂Ω. (Of course, one can also write P (x,y) for y in
the curved part of ∂Ω, but the calculations are too tedious.)

(f) If G(x,y) and P (x,y) are the Green function and the Poisson kernel obtained above,
write down the solution u(x) of the boundary value problem (just write down the
abstract expressions)

−∆u(x) = f(x) , for x ∈ Ω ,

u(x) = g(x) , for x ∈ ∂Ω .
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Problem 2. [Poisson formula in the disk (2-dimensional ball) of radius R]

In Problem 5 of Homework 5 you proved that the function

Φ(x) = −
1

2π
ln ∣x∣ , x ∈ R2 (1)

is a fundamental solution of −∆ in R2, i.e.,

−∆Φ(x) = δ(x) , x ∈ R2 .

In this problem you will use this fact and the method of electrostatic images to show that
the Green function of the Dirichlet boundary value problem for the Poisson equation in a
disk BR(0) of radius R centered in the origin of R2 is equal to

G(x,y) = Φ(x − y) −Φ(
∣x∣

R
(x∗ − y)) =

1

2π
ln

∣x∣ ∣x∗ − y∣

R ∣x − y∣
, (2)

where x∗ =
R2

∣x∣2
x is the image of x under inversion (note that x∗ ∉ BR(0)), and Φ(x) is the

fundamental solution of the operator −∆ given by (1).

(a) Explain why, for an arbitrary x ∈ BR(0), the function G(x,y) given by (2) satisfies

−∆yG(x,y) = δx(y) , y ∈ BR(y) .

(b) Check by a direct calculation that, if x is an arbitrary point in BR(0), x∗ is its image
under inversion, and y ∈ ∂BR(0), then

∣x − y∣2

∣x∗ − y∣2
=

∣x∣2

R2
,

and explain why this implies that G(x,y) is zero for y ∈ ∂BR(0).

(c) Let x and y have polar coordinates (r, θ) and (ρ,α), respectively, i.e.,

x = r cos θ i + r sin θ j , y = ρ cosα i + ρ sinα j

(where i and j are the unit vectors in positive x- and y-directions, respectively). Show
that the expression (2) for G(x,y) can be written as

G(x,y) =
1

4π
ln
R4 + r2ρ2 − 2R2rρ cos(θ − α)

R2 [r2 + ρ2 − 2rρ cos(θ − α)]
.

(d) Show that the Poisson kernel (cf. Salsa’s book, page 137) is

P (x,y) ∶= −
∂G

∂νy
(x,y)∣

y∈∂BR(0)
= −

∂G

∂ρ
(x,y)∣

ρ=R
=

1

2πR

1 − ( r
R
)

2

( r
R
)

2
+ 1 − 2 r

R cos(θ − α)
,

where x ∈ BR(0), y ∈ ∂BR(0).
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(e) Use the expressions derived above to write down the solution of the boundary value
problem

∆u(x) = 0 , for x ∈ BR(0) ,

u(x) = g(θ) , for x ∈ ∂BR(0) ,

where (r, θ) are the polar coordinates of the point x.

Problem 3. [Translation operator on D ′(Rn)]

Let v ∈ Rn, and define the operator Ev on D(Rn) by (Evφ)(x) ∶= φ(x − v). It is easy to
show that Ev is bijective (one-to-one and onto) from D(Rn) to D(Rn). Define the operator
Ev on D ′(Rn) as follows: ⟨EvF,φ⟩ ∶= ⟨F, ○E−vφ⟩ for any φ ∈ D(Rn). We give such a
definition (with −v) so that if F is a regular distribution, i.e., related to some f ∈ L1

loc(Rn)

by ⟨F,φ⟩ = ∫R f(x)φ(x)dx, then EvF will correspond to the function Evf : indeed,

⟨EvF,φ⟩ = ⟨F,E−vφ⟩ = ∫
R
f(x) (E−vφ)(x)dx = ∫

R
f(x)φ(x + v)dx

= ∫
R
f(y − v)φ(y)dy = ∫

R
(Evf)(y)φ(y)dy .

(a) Show that the mapping Ev ∶ D ′(Rn)→ D ′(Rn) is linear.

(b) Show that Ev ∶ D ′(Rn)→ D ′(Rn) is a continuous mapping.

(c) Show that the mapping Ev ∶ D ′(Rn)→ D ′(Rn) is injective, i.e., that if EvF = EvG for
F,G ∈ D ′(Rn), then F = G.

(d) Show that the mapping Ev ∶ D ′(Rn) → D ′(Rn) is surjective, i.e., that for every F ∈

D ′(Rn) there is G ∈ D ′(Rn) such that EvG = G.

Problem 4. [Fundamental solution in D ′(Rn)]

A fundamental solution of a differential operator A = ∑
∣α∣≤m

cαD
α (where α = (α1, . . . , αn) is a

multiindex, and ∣α∣ = α1+⋯+αn) is a distribution T ∈ D ′(Rn) such that AT = ∑
∣α∣≤m

cαD
αT = δ.

(a) Use what you know about convolution to show that if T is a fundamental solution of
the operator A in D ′(Rn), then A(T ∗ φ) = φ for all φ ∈ D(Rn).

(b) Find a fundamental solution of the operator
d2

dx2
in D ′(R). Look for it in the form

⟨T,φ⟩ = ∫
R
f(x)H(x)φ(x)dx = ∫

∞

0
f(x)φ(x)dx , φ ∈ D(R) ,

where f ∈ C2(R) and H is the Heaviside function, and show that f is the solution of
the initial value problem f ′′(x) = 0 for x ∈ (0,∞), f(0) = 0, f ′(0) = 1, whose solution
is easy to find.
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