Problem 1. Let

$$
f(x)= \begin{cases}1 & \text { if } x=\frac{1}{n} \text { for some } n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Show that f is integrable on $[0,1]$ and compute $\int_{0}^{1} f$.
Hint: Consider the set of points

$$
D_{\varepsilon / 2}=\left\{x \in[0,1]: f(x) \geq \frac{\varepsilon}{2}\right\} .
$$

Take a partition P such that the intervals containing points from $D_{\varepsilon / 2}$ have a total length $\frac{\varepsilon}{2}$. It will then be easy to give an upper bound on $U(f, P)$.

Problem 2. Provide an example of the following; explain your reasoning, draw a picture if needed.
(a) A sequence $\left(f_{n}\right)$ that converges to f pointwise, where each f_{n} has at most a finite number of discontinuities (hence is integrable), but f is not integrable.
(b) A sequence $\left(g_{n}\right)$ that converges uniformly to g, where each g_{n} is not integrable, but g is integrable.
(c) A non-integrable function h such that $|h|$ is integrable.
(d) A function $r:[a, b] \rightarrow \mathbb{R}$ that is non-negative (i.e., $r(x) \geq 0$ for all $x \in[a, b])$ and such that $r(x)>0$ for an infinite number of points $x \in[a, b]$, but $\int_{a}^{b} r=0$.
(e) A sequence $\left(t_{n}\right)$ that converges to 0 pointwise such that each function t_{n} is integrable on $[a, b]$ but $\lim _{n \rightarrow \infty} \int_{a}^{b} t_{n}$ does not exist.
(f) A sequence $\left(u_{n}\right)$ of non-negative functions u_{n} with $\lim _{n \rightarrow \infty} \int_{0}^{1} u_{n}=0$, but such that $u_{n}(x)$ does not converge to 0 for any $x \in[0,1]$.

Problem 3. Prove that, if f is continuous on $[a, b]$ and $f(x) \geq 0$ for all $x \in[a, b]$ with $f\left(x_{0}\right)>0$ for at least one point $x_{0} \in[a, b]$, then $\int_{a}^{b} f>0$.

Problem 4. Although this was not a part of Theorem 7.4.2, it is true that the product of integrable functions is integrable. Provide the details for each step in the following proof of this fact; you may use Theorem 7.4.2, but please indicate clearly which part of that theorem you are using.
(a) If f satisfies $|f(x)| \leq M$ on $[a, b]$, show that

$$
\left|(f(x))^{2}-(f(y))^{2}\right| \leq 2 M|f(x)-f(y)| .
$$

(b) Prove that, if f is integrable on $[a, b]$, then so is f^{2}.
(c) Prove that, if f and g are integrable, then $f g$ is integrable.

Hint: Consider $(f+g)^{2}$.

Problem 5. In this problem you will give a detailed proof of Theorem 7.4.2(v), i.e., you will show that that the integrability of f implies the integrability of $|f|$, and will obtain a useful inequality between the integrals of these functions. Let $f: A \rightarrow \mathbb{R}$ be a bounded function, and set

$$
\begin{aligned}
M & =\sup \{f(x): x \in A\}, & m & =\inf \{f(x): x \in A\} \\
M^{\prime} & =\sup \{|f(x)|: x \in A\}, & m^{\prime} & =\inf \{|f(x)|: x \in A\}
\end{aligned}
$$

(a) Prove that $M-m \geq M^{\prime}-m^{\prime}$.

Hint: You may need the inequality $||a|-|b|| \leq|a-b|$ (which follows easily from the triangle inequality), and the useful characterization of sup given in Lemma 1.3.8 (and a similar characterization of inf).
(b) Show that, if f is integrable on the interval $[a, b]$, then $|f|$ is also integrable on $[a, b]$.
(c) Prove that, if f is integrable on $[a, b]$, then $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$.

Food for Thought: Aksoy \& Khamsi, Problems 7.8, 7.9(a), 7.15 (all solved in the book).

