
MATH 5763 Homework 6 Due Wed, 10/21/2015

Problem 1. Let N = {Nt : t ≥ 0} be a (time-homogeneous) Poisson process with rate λ. Define
the flip-flop process X = {Xt : t ≥ 0} with state space S = {0, 1} by

Xt =
1

2
+ (−1)Nt

[
X0 −

1

2

]
,

where X0 is a random variable with values in S; assume that X0 is independent of the Poisson
process N . In other words, the flip-flop process switches between the states 0 and 1 at each event

of N . Since N is a Markov chain, X is also a Markov chain. Let Pt =

(
p00(t) p01(t)
p10(t) p11(t)

)
be the

stochastic semigroup of the process X, and G be the generator of Pt.

(a) Find the short-time transition probabilities pij(h) = P(Xt+h = j|Xt = i) and show that the

generator of the stochastic process X is G =

(
−λ λ
λ −λ

)
.

(b) To find the time evolution of the chain X – i.e., to find the stochastic semigroup Pt = etG,
one needs to find Gn for n ∈ N (of course, G0 = I, the identity matrix).

One way to compute Gn is to diagonalize it by a similarity transformation, G̃ = M−1GM,
using the tricks learned in Lecture 7. Then compute the nth power of the diagonal matrix
G̃ (which is very easy), and finally use that G̃n = M−1GnM, so that Gn = MG̃nM−1. In

fact, one can directly compute the diagonal matrix etG̃, and then to use that

Pt = etG =
∞∑
n=0

tn

n!
Gn =

∞∑
n=0

tn

n!
MG̃nM−1 = M

∞∑
n=0

tn

n!
G̃nM−1 = M etG̃M−1 .

You may use that in this problem one can take M =

(
1 −1
1 1

)
and M−1 =

(
1/2 1/2
−1/2 1/2

)
.

At the end, you should obtain that Pt =

(
1
2(1 + e−2λt) 1

2(1− e−2λt)
1
2(1− e−2λt) 1

2(1 + e−2λt)

)
, but I would like

to see the details of your computations.

(c) Now you will find Pt directly, without using the generator G. (Of course, you have to pretend
that you don’t know the answer.) One can do this using several methods.

The standard method is to solve, say, the Kolmogorov backward equations, d
dtPt = GPt, with

appropriate initial conditions (the Kolmogorov forward equations can also be used). You do
not need to do it here because we did this in class (see the example on pages 129–131 of
Lefevbre’s book, and pages 21–24 of the lecture notes from Lecture 7).

A trickier method for computing Pt (which works in this particular problem) is the following.
Note that p01(t) = P(Xs+t = 1 |Xs = 0) is equal to the probability that there were an odd
number of events of the Poisson process N of intensity λ in the interval (s, s+ t]. Using the
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explicit expression for the probability of exactly k events of a Poisson process to occur in a
time interval of length t, compute p01(t).

From p01(t), one can easily find p00(t) (how?), and the values of p10(t), and p11(t) can be
obtained simply by relabeling, but you do not need to do this here.

Hint: Note that
∑
j odd

αj

j!
=

∞∑
k=0

α2k+1

(2k + 1)!
=

1

2

(
eα − e−α

)
.

(d) Find the stationary distribution π by using the generator G.

(e) Now assume that initially the chain X is in state 0 (i.e., that X0 = 0). Determine the
probability distribution p(t) = (p0(t) p1(t)) (where pj(t) = P(Xt = j)) of the chain X at
time t by using your results above. As t goes to infinity, does p(t) tend to the stationary
distribution π?

(f) Define the generating functions Gi(ξ, t) :=

1∑
j=0

pij(t) ξ
j , and show that Gi satisfies the first-

order partial differential equation ∂Gi
∂t + 2λ(ξ − 1)∂Gi

∂ξ = λ(ξ − 1). Since the proofs for G0

and G1 are essentially the same, give a proof only for G0. You have to do this by using the
Kolmogorov forward equations, d

dtPt = PtG, i.e.,(
p′00(t) p′01(t)
p′10(t) p′11(t)

)
=

(
p00(t) p01(t)
p10(t) p11(t)

)(
−λ λ
λ −λ

)
.

(g) What are the initial conditions that G0 and G1 must satisfy? Why? (Recall that we assumed
that initially the chain is in state 0.)

One can show that the solution of the PDE above and the corresponding initial conditions is

G0(ξ, t) =
1

2

[
1 + ξ + (1− ξ)e−2λt

]
, G1(ξ, t) =

1

2

[
1 + ξ − (1− ξ)e−2λt

]
.

(h) From the very definition of Gi(ξ, t), show that

E[Xt|X0 = i] =
∂Gi
∂ξ

(1, t)

and

Var[Xt|X0 = i] = E[X2
t |X0 = i]− E[Xt|X0 = i]2 =

∂2Gi
∂2ξ

(1, t) +
∂Gi
∂ξ

(1, t)−
[
∂Gi
∂ξ

(1, t)

]2
.

Hint: Compare with Food for Thought Problem 1 below.

(i) Use the concrete expressions for the generating functions Gi(ξ, t) of the flip-flop problem
(written in part (g)) in order to find the conditional expectation E[Xt |X0 = 0] and the
conditional variance Var[Xt |X0 = 0], and sketch E[Xt |X0 = 0] and Var[Xt |X0 = 0] as
functions of t. Do your results look reasonable in the limiting cases t → 0+ and t → ∞?
Explain briefly.
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Problem 2. A death process is a random process that describes the number of people in a society
where the only reason for changing the number of people is dying (nobody is born, there is no
immigration, etc.). We say that the random process X = {Xt : t ≥ 0} is a death process with
parameter µ if each person dies independently of every other person, and the probability that each
person dies in one unit of time is µ (we assume that the units of time we use are much shorter than
the average lifetime of the people). Clearly, the probability of a death of a person in one unit of
time in a population of i people is iµ (again, we assume that the unit of time is “short”).

Here is the precise mathematical definition of a death process with parameter µ:

• the state space of the process is Z+ = {0, 1, 2, 3, . . .};

• the process is non-increasing, i.e., if s < t, then Xs ≥ Xt;

• if h is a very small positive number, then, for j ∈ N = {1, 2, 3, . . .},

P(Xt+h = j|Xt = i) =


iµh+ o(h) if j = i− 1 ,

1− iµh+ o(h) if j = i ,

o(h) if j > i or j ≤ i− 2 ,

and

P(Xt+h = 0|Xt = i) =


µh+ o(h) if i = 1 ,

1 if i = 0 ,

o(h) if i > 1 .

Here o(h) is a function satisfying lim
h→0

o(h)

h
= 0;

• for s < t, the difference Xt − Xs (equal to the number of deaths in the interval (s, t]) does
not depend on what has happened in the time interval (0, s].

In this problem you will analyze some aspects of this process.

(a) Let pi(t) = P(Xt = i). Condition on Xt to derive the equations

p0(t+ h) = µh p1(t) + p0(t) + o(h) ,

pj(t+ h) = (j + 1)µh pj+1(t) + (1− jµh) pj(t) + o(h) , j ∈ N .

(b) Subtract pj(t) from the jth equation from (a), divide through by h, and take the limit h→ 0,
to obtain the system

p′0(t) = µ p1(t) ,

p′j(t) = (j + 1)µ pj+1(t)− jµ pj(t) , j ∈ N .

Let the initial condition be X0 = I, where I is a random variable taking values in Z+.
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(c) Define the generating function

∆(ξ, t) :=
∞∑
j=0

pj(t) ξ
j

and show that

∂∆

∂ξ
=
∞∑
j=0

j pj(t) ξ
j−1 =

∞∑
j=1

j pj(t) ξ
j−1 ,

∂∆

∂t
=
∞∑
j=0

p′j(t) ξ
j .

(d) Use the differential equations from part (b) to show that ∆(ξ, t) of the death process satisfies
the partial differential equation

∂∆

∂t
= µ(1− ξ)∂∆

∂ξ
,

and the initial condition ∆(ξ, 0) = ξI (where I = X0 is the initial population).

Hint: Multiply the differential equation for p′j(t) by ξj and add all the equations.

(e) How can the probabilities pj(t) = P(Xt = j) be expressed in terms of ξ-derivatives of ∆(ξ, t)
evaluated at ξ = 0? Use this to find the explicit expressions for P(Xt = 0) and P(Xt = 1),
using that the solution of the initial-value problem for the generating function posed in part
(d) is

∆(ξ, t) =
[
1 + (ξ − 1) e−µt

]I
(there is no need to derive this expression).

(f) Show that
∂∆

∂ξ
(1, t) = E[Xt] ,

and use this fact to find E[Xt] for the death process.

(g) Using the same idea as in part (f), express the variance of Xt in terms of derivatives of its
generating function evaluated at ξ = 1. Use the explicit expression for ∆(ξ, t) given in (e) to
find VarXt for the death process.

(h) Radioactive decay is an example of a death process, if we think of a nucleus of the radioactive
isotope as “alive” before it decays, and “dead” after that. The “half-life”, T1/2, of a radioactive
isotope is defined as the time after which only half of the initial number of nuclei of this isotope
are “alive”. How is T1/2 related to µ? Justify your claim.

Food for Thought Problem 1. The probability generating function (p.g.f.) of a random variable
J taking only values in Z+ = {0, 1, 2, 3, . . .} is defined as

GJ(ξ) := E[ξJ ] =
∞∑
j=0

pjξ
j , where pj = P(J = j) .

provided the right-hand side exists. Prove the following properties of the p.g.f.’s:
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(a) GJ(1) = 1;

(b) G′J(1) = E[J ];

(c) G′′J(1) = E[J2]− E[J ];

(d) VarJ = G′′J(1) +G′J(1)− [G′J(1)]2;

(e) if J1, J2, . . ., Jr are i.i.d. random variables taking values in Z+, and K = J1 + · · ·+ Jr, then

GK(x) = [GJ(x)]r .

Please write explicitly where you use each of the assumptions.
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