Problem 1. [Derivatives of distributions]

Find the first and the second derivatives of the following distributions from $\mathscr{D}^{\prime}(\mathbb{R})$:
(a) $H(a-|x|)($ where $a>0)$;
(b) the "floor" function $\lfloor x\rfloor$, where $\lfloor x\rfloor$ is the smallest integer not exceeding x;
(c) the function

$$
f(x):=\left\{\begin{array}{cc}
0, & x \leq 0 \\
\sin x, & x>0
\end{array}\right.
$$

Remark: No need to use test functions - feel free to use facts like $\frac{\mathrm{d}}{\mathrm{d} x} H(x-a)=\delta(x-a)$, etc.

Problem 2. [Convolution]

(a) For $\phi \in \mathscr{D}(\mathbb{R})$, find $\delta_{a} * \phi$.
(b) Show that $\delta_{a} * \delta_{b}=\delta_{a+b}$.
(c) Directly from the definition of convolution, prove that $(H * H)(x)=H(x) x$.
(d) If $u(x)=H(x) x^{2}$, find $H * u$.

Problem 3. [Convolution in $\mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right)$]

Let $F(x, t)=H(x) \delta(t)$ and $G(x, t)=\frac{H(t)}{2 \sqrt{\pi t}} \mathrm{e}^{-x^{2} /(4 t)}$. Show that

$$
(F * G)(x, t)=\frac{H(t)}{\sqrt{2 \pi}} \int_{-\infty}^{x /(2 \sqrt{t})} \mathrm{e}^{-z^{2} / 2} \mathrm{~d} z
$$

Problem 4. [Fourier transform of sign and H]
(a) Prove that $\mathcal{F}(\operatorname{sign})(\xi)=\frac{2}{\mathrm{i}} \mathrm{P} . \mathrm{v} . \frac{1}{\xi}$, where the "sign" function is defined as

$$
\operatorname{sign}(x):=\left\{\begin{aligned}
-1, & x<0 \\
0, & x=0 \\
1, & x>0
\end{aligned}\right.
$$

Hint: Note that $\operatorname{sign}^{\prime}=2 \delta$, and transform this to obtain $\xi \widehat{\operatorname{sign}}(\xi)=-2$ i. Use Example 7.12 on page 386 of the book and recall that $\widehat{\text { sign }}$ is odd while δ is even.
(b) Show that $\mathcal{F}(H)(\xi)=\pi \delta(\xi)+\frac{1}{\mathrm{i}}$ P.v. $\frac{1}{\xi}$.

Hint: The easiest way to prove this is to express H in terms of sign and to use (a).

Problem 5. [Computing integrals by Parseval's identity]

(a) Show that $\mathcal{F}[H(a-|x|)]=2 \frac{\sin a \xi}{\xi}$ (where $x \in \mathbb{R}$ and $a=$ const >0).
(b) Use Parseval's identity and the result from part (a) to show that

$$
\int_{0}^{\infty} \frac{\sin a x \sin b x}{x^{2}} \mathrm{~d} x=\frac{\pi}{2} \min (a, b) .
$$

Problem 6. [Heisenberg uncertainty principle on \mathbb{R}]

Let $f \in \mathscr{S}(\mathbb{R})$. From the general theory we know that $f \in L^{2}(\mathbb{R})$ and, therefore, its Fourier transform \hat{f} is also in $L^{2}(\mathbb{R})$.
(a) Show that $\|f\|_{L^{2}(\mathbb{R})}^{2}:=\int_{\mathbb{R}}|f(x)|^{2} \mathrm{~d} x=-2 \int_{\mathbb{R}} x f(x) f^{\prime}(x) \mathrm{d} x$.

Hint: Consider the identity $|f(x)|=|f(x)|^{2} \frac{\mathrm{~d}}{\mathrm{~d} x} x$ together with integration by parts.
(b) Use part (a) to prove that $\|f\|_{L^{2}(\mathbb{R})}^{2} \leq 2\|x f\|_{L^{2}(\mathbb{R})}\left\|f^{\prime}\right\|_{L^{2}(\mathbb{R})}$.
(c) Use part (b) and some basic properties of the Fourier transform to conclude that

$$
\|f\|_{L^{2}(\mathbb{R})}^{2} \leq 4 \pi\|x f\|_{L^{2}(\mathbb{R})}\|\xi \hat{f}\|_{L^{2}(\mathbb{R})} .
$$

This result can be interpreted that if, say, $\|f\|_{L^{2}(\mathbb{R})}=1$, then the function f and its Fourier transform \hat{f} cannot be simultaneously too "localized" around 0 . In the language of quantum physics, this means that it is impossible to measure simultaneously the position and the momentum of a particle with arbitrary accuracy.

