Problem 1. Let $f : [a, b] \to \mathbb{R}$ be a bounded function, and let P be an arbitrary partition of the interval [a, b].

- (a) Use Lemma 7.2.4 to explain why $U(f) \ge L(f, P)$.
- (b) Use your result in part (a) to show that $U(f) \ge L(f)$, which provides a proof of Lemma 7.2.6.

Problem 2. Consider the function $f : [0,5] \to \mathbb{R} : x \mapsto x^2$. Take the uniform partition $P_n := \{0 = x_0, x_1, x_2, \dots, x_{n-1}, x_n = 5\}$ consisting of the points $x_k = \frac{5k}{n}, k = 0, 1, 2, \dots, n$.

- (a) Compute the value of $L(f, P_n)$. You may find useful that $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- (b) Compute the value of $U(f, P_n)$.
- (c) Show that, in this particular example, $\lim_{n \to \infty} [U(f, P_n) L(f, P_n)] = 0.$

Problem 3.

(a) Consider the piecewise linear functions f_n on [0,2] whose graph consists of segments of straight lines connecting the following pairs of points: (0,0) with $(\frac{1}{n},n)$, $(\frac{1}{n},n)$ with $(\frac{2}{n},0)$, and $(\frac{2}{n},0)$ with (2,0). In other words, $f_n: [0,2] \to \mathbb{R}$ is given by

$$f_n(x) = \begin{cases} n^2 x , & x \in [0, \frac{1}{n}], \\ 2n - n^2 x , & x \in [\frac{1}{n}, \frac{2}{n}], \\ 0 , & x \in [\frac{2}{n}, 2]. \end{cases}$$

Since the area under the graph of f_n is simply an area of a triangle, you can find it by using elementary geometry, no need to integrate.

Find the pointwise limit, $\lim_{n \to \infty} f_n(x)$, and compare $\lim_{n \to \infty} \int_a^b f_n$ and $\int_a^b \lim_{n \to \infty} f_n$.

(b) Assume that, for each $n \in \mathbb{N}$, f_n is an integrable function on [a, b]. If (f_n) converges to f uniformly on [a, b], prove that f is also integrable on [a, b].

Hint: The Integrability Criterion from Theorem 7.2.8 will be useful. You can write

$$U(f,P) - L(f,P) = U(f,P) - L(f_n,P) + L(f_n,P) - L(f_n,P) + L(f_n,P) - L(f_n,P) + L(f_n,P) - L(f,P) ,$$

use the triangle inequality, the fact that the convergence of (f_n) is uniform, and the integrability of each f_n , to show that $\forall \varepsilon > 0$ given in advance, $U(f, P) - L(f, P) < \varepsilon$ for an appropriately chosen partition P.

Problem 4. A tagged partition $(P, \{x_k^*\})$ is a partition where in addition to a partition P, we choose a sampling point x_k^* in each subinterval $[x_{k-1}, x_k]$. The corresponding *Riemann* sum is defined as follows:

$$R(f, P) := \sum_{k=1}^{\infty} f(x_k^*) \,\Delta x_k \,, \qquad \Delta x_k = x_k - x_{k-1} \,.$$

Riemann originally defined the integral of f over [a, b] as follows. A bounded function $f:[a, b] \to \mathbb{R}$ is *integrable* on [a, b] with $\int_a^b f = A$ if for any $\varepsilon > 0$ there exists a $\delta > 0$ such that for any tagged partition $(P, \{x_k^*\})$ with $\Delta x_k < \delta$ for all k, it follows that

$$|R(f,P) - A| < \varepsilon .$$

Show that if f satisfies the Riemann's definition for integrability, then f is integrable in the sense of Definition 7.2.7.

Problem 5. Let $f : [a, b] \to \mathbb{R}$ be increasing on the set [a, b] (i.e., $f(x) \le f(y)$ whenever x < y). Show that f is integrable on [a, b].

Hint: Take a uniform partition (such that all Δx_k are the same), and you will obtain a very simple expression for U(f, P) - L(f, P), which can easily be made smaller than any $\varepsilon > 0$.

Food for Thought: Abbott, Exercises 7.2.2, 7.2.3.