Problem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function, and let P be an arbitrary partition of the interval $[a, b]$.
(a) Use Lemma 7.2.4 to explain why $U(f) \geq L(f, P)$.
(b) Use your result in part (a) to show that $U(f) \geq L(f)$, which provides a proof of Lemma 7.2.6.

Problem 2. Consider the function $f:[0,5] \rightarrow \mathbb{R}: x \mapsto x^{2}$. Take the uniform partition $P_{n}:=\left\{0=x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}=5\right\}$ consisting of the points $x_{k}=\frac{5 k}{n}, k=0,1,2, \ldots, n$.
(a) Compute the value of $L\left(f, P_{n}\right)$. You may find useful that $\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(b) Compute the value of $U\left(f, P_{n}\right)$.
(c) Show that, in this particular example, $\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0$.

Problem 3.

(a) Consider the piecewise linear functions f_{n} on $[0,2]$ whose graph consists of segments of straight lines connecting the following pairs of points: $(0,0)$ with $\left(\frac{1}{n}, n\right),\left(\frac{1}{n}, n\right)$ with $\left(\frac{2}{n}, 0\right)$, and $\left(\frac{2}{n}, 0\right)$ with $(2,0)$. In other words, $f_{n}:[0,2] \rightarrow \mathbb{R}$ is given by

$$
f_{n}(x)= \begin{cases}n^{2} x, & x \in\left[0, \frac{1}{n}\right] \\ 2 n-n^{2} x, & x \in\left[\frac{1}{n}, \frac{2}{n}\right] \\ 0, & x \in\left[\frac{2}{n}, 2\right]\end{cases}
$$

Since the area under the graph of f_{n} is simply an area of a triangle, you can find it by using elementary geometry, no need to integrate.
Find the pointwise limit, $\lim _{n \rightarrow \infty} f_{n}(x)$, and compare $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}$ and $\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n}$.
(b) Assume that, for each $n \in \mathbb{N}$, f_{n} is an integrable function on $[a, b]$. If $\left(f_{n}\right)$ converges to f uniformly on $[a, b]$, prove that f is also integrable on $[a, b]$.
Hint: The Integrability Criterion from Theorem 7.2 .8 will be useful. You can write
$U(f, P)-L(f, P)=U(f, P)-L\left(f_{n}, P\right)+L\left(f_{n}, P\right)-L\left(f_{n}, P\right)+L\left(f_{n}, P\right)-L(f, P)$, use the triangle inequality, the fact that the convergence of $\left(f_{n}\right)$ is uniform, and the integrability of each f_{n}, to show that $\forall \varepsilon>0$ given in advance, $U(f, P)-L(f, P)<\varepsilon$ for an appropriately chosen partition P.

Problem 4. A tagged partition $\left(P,\left\{x_{k}^{*}\right\}\right)$ is a partition where in addition to a partition P, we choose a sampling point x_{k}^{*} in each subinterval $\left[x_{k-1}, x_{k}\right]$. The corresponding Riemann sum is defined as follows:

$$
R(f, P):=\sum_{k=1}^{\infty} f\left(x_{k}^{*}\right) \Delta x_{k}, \quad \Delta x_{k}=x_{k}-x_{k-1}
$$

Riemann originally defined the integral of f over $[a, b]$ as follows. A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$ with $\int_{a}^{b} f=A$ if for any $\varepsilon>0$ there exists a $\delta>0$ such that for any tagged partition $\left(P,\left\{x_{k}^{*}\right\}\right)$ with $\Delta x_{k}<\delta$ for all k, it follows that

$$
|R(f, P)-A|<\varepsilon .
$$

Show that if f satisfies the Riemann's definition for integrability, then f is integrable in the sense of Definition 7.2.7.

Problem 5. Let $f:[a, b] \rightarrow \mathbb{R}$ be increasing on the set $[a, b]$ (i.e., $f(x) \leq f(y)$ whenever $x<y)$. Show that f is integrable on $[a, b]$.
Hint: Take a uniform partition (such that all Δx_{k} are the same), and you will obtain a very simple expression for $U(f, P)-L(f, P)$, which can easily be made smaller than any $\varepsilon>0$.

Food for Thought: Abbott, Exercises 7.2.2, 7.2.3.

