
MATH 4193/5103 HW 6 Due by 11:59 pm on 5/2 (Sat)

Food for Thought Problem 1.1 [Thinking simply, again: self-similarity]

In Problem 1 of Homework 4 you studied the golden mean γ, which is defined as the expres-
sion

γ =
1

1 +
1

1 +
1

1 +
1

1 + · · ·

. (1)

There you obtained the golden mean as a result of an iterative procedure, and proved rigor-
ously the existence and uniqueness of the fixed point of this procedure.

(a) In Food for Thought Problem 1 of Homework 5 you found the resistance of an infinite
system of resistors by noticing the self-similarity of the system. Can you use the same
idea to find simply the value of the golden mean?

Hint: Look at the part of the right-hand side of (1) written with bold face digits. How
it is related to γ?

(b) Can you apply the same idea to find the value of the number
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?

Problem 2. [A bead on a rotating hoop]

A bead of mass m can slide without friction on a circular hoop of radius ` that rotates about
a vertical diameter with constant angular speed Ω as shown in the figure.
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1Food for Thought problems are NOT to be turned it, they are just for fun.
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The equation of motion of the bead can be shown to be

m`
d2θ

dt2
= m`Ω2 cos θ sin θ −mg sin θ , (2)

where the angle θ belongs to the circle S1, which is nothing but the the interval (−π, π] with
identified ends (if you are more versed in mathematics, you can write S1 = R/(2πZ)). By
introducing the dimensionless time τ := t

√
g
`

and the non-negative dimensionless parameter

µ := `Ω
g
≥ 0, we can rewrite (2) as the system

dθ

dτ
= ν ,

dν

dτ
= (µ cos θ − 1) sin θ . (3)

The parameter µ is the square of the ratio of the angular velocity Ω of the hoop’s rotation
and the frequency

√
g
`

of the small oscillations of the bead when the hoop is not rotating.

(a) Find all fixed points (i.e., equilibrium solutions) of the system (3). Show that, if µ ≤ 1,
there are two equilibria, while for µ > 1 there are four equilibria.

(b) Linearize (3) around the fixed point (π, 0). What kind of fixed point is it? Is it
hyperbolic?

Hint: If (3) is written as d
dτ

x = f(x), then Df(x) =

(
0 1

µ(cos2 θ − sin2 θ)− cos θ 0

)
.

(c) In the case µ < 1, linearize (3) around the fixed point (0, 0), and show that (0, 0) is a
center (hence, non-hyperbolic). Find the period of the small periodic motion around
this fixed point as a function of the parameter µ.

Hint: If λ1,2 are the eigenvalues of the matrix of the linearized system (recall that λ2

is the complex conjugate of λ1), then in the case of a center the period of the small
periodic motions around the corresponding fixed point is 2π

|Imλ1| .

(d) In the case µ > 1, linearize (3) around the fixed point (0, 0). What kind of fixed point
is (0, 0) in this case? Is it hyperbolic? Find its eigenvalues and eigenvectors.

(e) In the case µ > 1, linearize (3) around the fixed point (arccos 1
µ
, 0) and show that it

is a center. Find the period of the small periodic motion around this fixed point as a
function of the parameter µ.

(f) Sketch the position of the four equilibria as functions of µ (use solid line for the sta-
ble equilibria and dashed line for the unstable ones). Find the positions of the four
equilibria in the limit µ → ∞. What is the physical explanation of your result (in
particular, in the limit µ→∞)?

(g) What is the physical explanation of the bifurcation occurring at µ = 1?
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(h) Only if you take the class as 5103!

Use your results from (d) and (e) to sketch the phase portrait of the system in the case
µ > 1.

Remark: The behavior of the system around the fourth fixed point, (− arccos 1
µ
, 0), is

the same as around (arccos 1
µ
, 0).

(i) Only if you take the class as 5103!

Let η(Ω) be the frequency of the small oscillations of the bead around the stable equi-
librium solutions as a function of the rotation frequency Ω. Plot η(Ω) for Ω ∈ [0, 3ω0].
Show that η(Ω) has a singularity of a cusp type at Ω = ω0 (i.e., that lim

Ω→ω0−
η(ω) = −∞

and lim
Ω→ω0+

η(ω) =∞). What does this imply for the period, T (Ω) := 2π
η(Ω)

?

Problem 3. [Liénard plane; Lyapunov function for the van der Pol equation]

Let f and g be functions of one variable. Consider the equation

x′′ + f(x)x′ + g(x) = 0 . (4)

(a) Show that (4) can be rewritten as a system of first-order equations as follows:

x′ = y − F (x) ,

y′ = −g(x) ,
(5)

where F (x) :=

∫ x

0

f(s) ds. Now everything is happening in the (x, y) plane, which for

the particular choice (5) is called the Liénard plane.

Hint: Set y := x′+F (x), use the Fundamental Theorem of Calculus and the Chain Rule.

(b) Write down (5) for the particular choice of the van der Pol’s equation,

x′′ + µ(1− x2)x′ + x = 0 , µ = const > 0 . (6)

(c) Use the function V (x, y) = 1
2
(x2+y2) as Lyapunov function for the system of first-order

ODEs that you wrote in part (b) (corresponding to the van der Pol’s equation (6)) to
show that there are no periodic orbits of that system in the region {−

√
3 < x <

√
3}

(x 6= 0).

Hint: Compute d
dt
V (x(t), y(t)) by using the Chain Rule and the expressions for x′ and

y′ from (5). Look at the sign of this derivative in the region {−
√

3 < x <
√

3} (x 6= 0).
What can you conclude about the behavior of V (x(t), y(t)) with time and what does
this imply about the existence of periodic orbits?
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