
MATH 4073 Homework 6 Due Thu, 10/22/13

Problem 1. Let f : R → R be a C∞ function (i.e., a function that is differentiable infinitely
many times), and suppose that x ∈ R and h > 0 are some fixed numbers. Derive a formula to
approximate f ′(x) that uses only f(x−2h), f(x), f(x+h), f(x+3h) such that the local truncation
error is O(h3), i.e., such that

f ′(x) =
[

your expression approximating f ′(x)
]

+O(h3) .

Hint: Expand f(x− 2h), f(x+ h), f(x+ 3h) in a Taylor series about x up to h3, as in

f(x+ h) = f(x) + f ′(x)h+
1

2!
f ′′(x)h2 +

1

3!
f ′′′(x)h3 +O(h4) ,

and from these expressions eliminate the terms containing f ′′(x) and f ′′′(x).

Problem 2. The quadrature formula∫ 2

0
f(x) dx = c0f(0) + c1f(1) + c2f(2)

is exact for all polynomials of degree less than or equal to 2. Determine c0, c1, and c2.

Hint: Note that this quadrature formula must be exact for the polynomials f(x) = 1, f(x) = x,
and f(x) = x2. Use this fact to write a system of three (linear) equations for c0, c1, and c2.

Problem 3. Bhagyashri defined a family of polynomials, which she modestly denoted by B0, B1,
B2, . . ., that satisfy the following conditions:

(i) the polynomial Bk is of degree k;

(ii) the polynomials Bk are monic, i.e., the coefficient in front of the term with the highest power
of x in Bk (in our case, this is the coefficient of xk) is equal to 1;

(iii) the polynomials B0, B1, B2, . . ., Bn form an orthogonal basis in the space of polynomials
Vn(0,∞;w(x) = e−x).

Recall that Vn(a, b;w(x)) stands for the linear space of polynomials of degree no greater than n
endowed with the inner product

〈P,Q〉 =

∫ b

a
P (x)Q(x)w(x) dx .

In the solution of this problem the following identity will be handy (where 0! := 1):∫ ∞
0

xk e−x dx = k! .
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(a) Clearly, B0(x) = 1 for each x ∈ [0,∞). Find the only monic polynomial B1 of degree 1 that
is orthogonal to B0.

(b) Find the only monic quadratic polynomial B2 that is orthogonal to both B0 and B1.

(c) Show that the polynomial P (x) = x2 + 3 can be represented as a linear combination of the
polynomials B0, B1 and B2 as follows: P = B2 + 4B1 + 5B0.

(d) Show directly that 〈B0, B0〉 = 1, 〈B1, B1〉 = 1, 〈B2, B2〉 = 4.

(e) Find the orthogonal projection, projB0+2B1
P , of the polynomial P (x) = x2 + 3 onto the

“straight line”
` := {t(B0 + 2B1) | t ∈ R}

in the 3-dimensional inner product linear space V2(0,∞; e−x). If you have solved part (c),
then finding this orthogonal projection should be easy.

Hint: If u and v are vectors in the inner product linear space V , then the orthogonal projection
of the vector u onto the straight line in the direction of v is the vector

projvu =
〈u,v〉
〈v,v〉

v

– see the picture below.

projv u

u

v

(f) Finally, let B̃k := µkBk, where µk > 0 is a constant (depending on k) such that the norm,∥∥B̃k

∥∥ :=

√〈
B̃k, B̃k

〉
,

of the polynomial B̃k is 1. Find the explicit expressions for B̃0(x), B̃1(x), and B̃2(x).

Problem 4. The Legendre polynomials are a family of monic polynomials

P0(x) = 1 , P1(x) = x , P2(x) = x2 − 1

3
, P3(x) = x3 − 3

5
x , . . . ,

such that P0, P1, . . ., Pn form an orthogonal basis of the linear space Vn(−1, 1;w(x) ≡ 1) (i.e., the
vector space of all polynomials of degree ≤ n endowed with the weight function w(x) = 1 for all
x ∈ [−1, 1]).
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The goal of this problem is to find a Gaussian quadrature formula with degree of precision 5 based
on the general formalism developed in class. The notations used are the same as in the handout
“Theoretical foundations of Gaussian quadrature”.

(a) Find the roots x1, x2, and x3, of the polynomial P3. Order them so that x1 < x2 < x3.

Remark: Recall that the general theory (Lemma 1 on page 7 of the handout) guarantees that
P3 has three real roots, all of them in the interval (−1, 1).

(b) Write down the polynomials L1, L2, L3.

Hint: Here is what I obtained for L2: L2(x) = −5
3x

2 + 1 (but you have to derive this).

(c) Find the weights w1, w2, w3.

Hint: I obtained w3 = 5
9 .

(d) Write down the quadrature formula coming from parts (a), (b), (c).

(e) Show that the quadrature formula obtained in (d) is exact for all monomials xk if k is an odd
positive integer.

Hint: This can be done without doing any computations!

(f) Show that the quadrature formula obtained in (d) is exact for the polynomial f(x) = 1.

(g) Show that the quadrature formula obtained in (d) is exact for the polynomial f(x) = x2.

(h) Show that the quadrature formula obtained in (d) is exact for the polynomial f(x) = x4.

(i) Show that the quadrature formula obtained in (d) is not exact for the polynomial f(x) = x6.
Does this agree with the theoretical prediction about the degree of precision of the method
you developed?

(j) Now let us apply the beautiful quadrature formula you derived in (d) to a concrete problem.
The so-called error function is defined as

erf(z) :=
2√
π

∫ z

0
e−x

2
dx .

It is important for engineering applications; it is related to the c.d.f. Φ(z) of the standard
normal distribution by erf(z) = 2Φ(

√
2 z) − 1. (To solve this problem, you do not need to

know what these words mean.)

You have to find the value of erf(1). Since the limits of the integral in the definition of
erf(1) are 0 and 1 but in the quadrature formula the integral was from −1 to 1, first find an
appropriate linear change of variables y = η(x) such that η(0) = −1 and η(1) = 1. Change
the integration variable from x to y = η(x).

Remark: You can also find infinitely many nonlinear changes of variables that satisfy these
two conditions, but why make things more complicated?

(k) Apply the Gaussian quadrature formula found in (d) to compute the numerical value of erf(1).
Find the absolute and the relative error if you know that the exact value of erf(1) is

erf(1)exact = 0.8427007929497148693412206350826092592960669979663029084599 . . . .
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