

MATH 5763 Homework 5 Due in class on 10/6/2015


Problem 1. This problem is a continuation of Problems 3 and 4 of Homework 4. In those problems
you considered a Markov chain with five states, and after relabeling the states the transition matrix
of the Markov chain became


P =


 C1 0 0


0 C2 0


∗ ∗ T


 =



1
3


2
3


1 0


0


0


0 0


0 0


0 0 1 0 0


0 0
1
6


1
3


1
4
0


1
4


1
2


1
2 0


 ;


here 0 denotes a matrix of appropriate size with zero entries, while a star denotes an arbitrary
matrix of appropriate size. You proved that C1 and C2 are stochastic matrices, while T is not.


The form in which we wrote the transition probabilities P (after relabeling the states) is very
convenient for studying the long-term behavior of the Markov chain because of the following fact:


Pn =


 C1 0 0


0 C2 0


∗ ∗ T


n


=


 Cn
1 0 0


0 Cn
2 0


∗ ∗ Tn


 .


(a) [Food for Thought (discussed in class)] Consider only the irreducible matrix C1 con-
taining only the recurrent states 1 and 2. Let µi be the average number of transitions needed
by the process, starting from state i, to return to i for the first time (sometimes µi is called
the mean recurrence time of state i). In part (a) of Problem 4 of Homework 4 you found the


probabilities ρ
(n)
ii of returning to state i from the initial state i for the first time in exactly n


steps (for i ∈ {1, 2}). Use your results to compute µ1 and µ2. Are the states 1 and 2 positive
recurrent or null recurrent? Did you expect what you just observed? Explain briefly.


Hint: The following trick is very useful for evaluating sums: differentiating with respect to q
both sides of the formula for the sum of a geometric series,


∞∑
n=0


qn =
1


1− q
, |q| < 1 ,


one obtains
∞∑
n=1


nqn−1 =
1


(1− q)2
, |q| < 1


(in the sum in the left-hand side one can start the summation from 0, but the term with n = 0
is equal to zero). (Incidentally, differentiating one more time, one can obtain an expression
for
∑∞


n=2 n(n− 1)qn, from which
∑∞


n=2 n
2qn can be found, etc.)


(b) [Food for Thought (discussed in class)] Consider only the matrix C1 containing the
recurrent states 1 and 2. Since these two states form an irreducible set, the Ergodic Theorem
guarantees that it has a unique stationary distribution π̃ = (π̃1 π̃2). Find π̃.
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(c) [Food for Thought (discussed in class)] Your results in (a) and (b) are related. How?


(d) In the rest of this problem you will consider the transient states 4 and 5. Recall that the
indicator function of an event A ⊆ Ω is a random variable IA : Ω→ {0, 1} defined as


IA(ω) =


{
1 if ω ∈ A ,
0 if ω /∈ A .


Let j be a transient state,


Yj :=


∞∑
n=0


I{Xn=j}


be the number of times the chain visits it, and


E[Yj |X0 = k] = E


[ ∞∑
n=0


I{Xn=j}


∣∣∣∣∣ X0 = k


]


be the expected number of times the chain visits the transient state j if initially it is in the
transient state k. Show that


E[Yj |X0 = k] =
∞∑
n=0


p
(n)
kj =


( ∞∑
n=0


P(n)


)
kj


=


( ∞∑
n=0


Pn


)
kj


=
(


(I−T)−1
)
kj


,


where I is the unit matrix of appropriate size.


Hint: Use the fact that, for a matrix A, if the “geometric series”
∑∞


n=0A
n converges, its sum


is equal to
∞∑
n=0


An = (I−A)−1 .


Note that for numbers (i.e., 1× 1 matrices) this becomes the well-known formula.


Remark: If T corresponds to the transient states only, there is a theorem that guarantees
that the matrix (I−T) is invertible.


(e) I did the math, and obtained


T =


(
1
4


1
2


1
2 0


)
, I−T =


(
3
4 −1


2


−1
2 1


)
, (I−T)−1 =


(
2 1


1 3
2


)
.


Discuss the meaning of each entry of (I−T)−1 in the light of what you proved in part (d).


Problem 2. In this and in the next problem you will consider a particular case of the gambler’s
ruin problem. It will be useful if you review the material from pages 85–88 and 100–104 of the
book. In particular, you need to know the definitions of:


• the probability ρ
(n)
ij of first visit of state j starting from state i in exactly n steps, where n ≥ 1


(page 81);
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• the probability fij =


∞∑
n=1


ρ
(n)
ij of eventually visiting state j starting from state i (page 87);


• the probability ri(C) of eventually entering the closed irreducible set C of recurrent states if
initially the system is in the transient state i (page 100).


Consider a four-state gambler’s ruin chain with state space X = {0, 1, 2, 3} and transition matrix


P =



1 0 0 0


1
4 0 3


4 0


0 1
4 0 3


4


0 0 0 1


 .


(a) Draw a picture with the states and arrows corresponding to non-zero transition probabilities
pij between them. Identify the transient and the recurrent states, as well as the closed and
irreducible classes of recurrent states.


(b) Compute the probability ρ
(n)
10 for all n ≥ 1.


Hint: This is easy for the particular transition matrix in this problem! For example, it is


clear that ρ
(n)
10 = 0 for all even values of n.


(c) Use your result from (b) to show that f10 = 4
13 .


(d) Find the probability f13. Explain briefly your reasoning.


Hint: If you think about the meaning of this probability, you won’t need to do any calculations!


(e) Show that f11 = ρ
(2)
11 and use this to compute f11.


(f) Determine f22.


(g) Given that X0 = 1, what is the expected number of time that the chain will return to state
1 in the subsequent steps by using the fact that, if the chain is at state i at time n = 0, the


expected number of subsequent visits to a transient state j is equal to
fij


1− fjj
. (You can take


this fact for granted, but think about its meaning in the light of Equation (3.41) on page 88
of Lefevbre’s book.)


(h) Answer the same question as in (g) but this time using the method you derived in Prob-
lem 1(d,e) above.


Problem 3. In this problem you will find the probability of ruin of a gambler for the same
transition probability matrix as in Problem 2, but using different methods.


Recall Theorem 3.2.2 of the book according to which, if C is a closed and irreducible set of recurrent
states, and D is the set of all transient states, and i ∈ D is a transient state, then the probability
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ri(C) of the chain to enter the set C eventually if X0 = i is the smallest nonnegative solution of
the system


ri(C) =
∑
j∈D


pij rj(C) +
∑
j∈C


pij , for all i ∈ D .


Moreover, if D is a finite set (as in this problem), then the solution is unique.


(a) Write down this system of equations for the probabilities ri({0}) of eventual ruin starting
from state i.


(b) Solve the system derived in (a).


(c) Compare your results with your results from Problem 2. Please be specific what numbers you
are comparing.


Problem 4. Let Wt and Mt be the number of women, respectively men, entering a big store in
the time interval [0, t]. Assume that W = {Wt}t≥0 and M = {Mt}t≥0 are independent Poisson
processes with intensities ω and µ, respectively.


(a) [Food for Thought only (follows from Problem 3(a) of HW 3; discussed in class)]


Prove that the total number of customers, Nt := Wt +Mt, entering the store forms a Poisson
process with intensity ω + µ. Explain briefly why your result is obvious.


(b) [Food for Thought only (follows from Problem 3(b) of HW 3; discussed in class)]


Find the conditional probability P(Mt = m |Nt = n), for 0 ≤ m ≤ n, and show that
Mt can be considered as a binomial random variable with one random and one deterministic
parameter, namely Mt ∼ Bin(Nt,


µ
ω+µ). Why is this result obvious? Show that the conditional


expectation E[Mt |Nt] is the random variable E[Mt |Nt] = µ
ω+µ Nt. (To answer the last


question, you can use what you know about binomial random variables.)


(c) What is the probability that the first woman arrives at the store before the first man?


Hint: Here is a useful fact: if the random variables E1 ∼ Exp(α1) and E2 ∼ Exp(α2)


are independent, then P(E1 < E2) =
α1


α1 + α2
. You do not need to prove this fact in your


homework, but I expect that you know how to prove it.


[Food for Thought only] Could you have guessed the answer to the question in part (c)
in the three limiting cases


• ω → 0 while µ is kept equal to a positive constant,


• µ→ 0 while ω is kept equal to a positive constant,


• ω = µ?


Check that your general result obtained above behaves as expected in these three limits.


(d) Let H denote the arrival time of the first customer (it does not matter whether it is a woman
or a man). What are the probability density function and the cumulative distribution function
of the random variable H? (You can answer this question without any calculations, by using
your answers to the previous parts of this problem.)
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(e) What is the probability that during the first three hours (i.e., in the interval [0, 3]), a total
of exactly four customers have arrived at the store?


(f) Given that exactly four customers have arrived during the first three hours, what is the
probability that all four of them were men?


[Food for Thought only] Could you have guessed the answer to this question in the three
limiting cases from the “Food for Thought” part of question (c)? Does your general answer
match your intuition in these limiting cases?


(g) Let T1 denote the time of arrival of the first man at the store. Then WT1 is the number of
women that have arrived at the store by the time of the first man’s arrival. Show that the
probability distribution of the random variable WT1 is


P(WT1 = k) =
ωkµ


(ω + µ)k+1
for k ∈ Z+ .


Hint: Recall that


∫ ∞
0


ξk e−ξ dξ = Γ(k + 1) = k! for k ∈ Z+ = {0, 1, 2, . . .}.


(h) Consider your result in part (g) in the limiting case µ→ 0 (while ω is kept at a fixed strictly
positive value). Does your result seem strange? How do you explain this “paradox”?


[Food for Thought only] Consider the other two limiting cases as in part (c) to check if
the results agree with your intuition.


Food for Thought Problem 1. Consider an irreducible positive recurrent (discrete-time discrete-
state space) Markov chain {Xn}∞n=0, and assume that the initial state X0 = i. Let Nn(i) be the
number of visits to state i in the first n trials, and Tm(i) denote the number of trials until the mth
visit to state i. Justify the relationship P(Tm(i) ≥ n) = P(Nn(i) ≤ m). (Just give a convincing
explanation in a couple of sentences.)


Food for Thought Problem 2. A random walk can be represented as a connected graph between
coordinates (n, y), where the ordinate y is the position of the walk, and the abscissa n represents
the number of steps. A walk of 7 steps which joins (0, 1) and (7, 2) is shown in the figure below.
Suppose that a random walk starts at (0, y1) and finishes at (n, y2), where y1 > 0, y2 > 0, and
n+y2−y1 is an even number. Suppose also that the walk first visits the origin (i.e., position y = 0)
at time n = n1. Reflect that part of the path for which n ≤ n1 in the n-axis (see the figure), and
use a reflection argument to show that the number of paths from (0, y1) to (n, y2) which touch or
cross the n-axis is equal to the number of all pats from (0,−y1) to (n, y2). This is known as the
reflection principle.
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