Problem 1. [Fundamental solution of the heat equation on \mathbb{R}^{1+1}]

In this problem you will derive the so-called fundamental solution of the heat equation on \mathbb{R}^{1+1}, i.e., in one spatial dimension (x) and one temporal dimension (t). Write the heat equation as

$$
\begin{equation*}
u_{t}(x, t)=\alpha^{2} u_{x x}(x, t), \quad x \in \mathbb{R}, \quad t \in(0, \infty) \tag{1}
\end{equation*}
$$

where α is a positive constant. We demand that the fundamental solution have the following properties:
(i) $u(x, t) \geq 0$;
(ii) $u(\cdot, t) \in C^{\infty}(\mathbb{R})$ for all $t>0$;
(iii) $\int_{\mathbb{R}} u(x, t) \mathrm{d} x=1$ for all $t>0$;
(iv) $\lim _{x \rightarrow \pm \infty} u(t, x)=0$ for all $t>0$;
(v) $u(t, x)=u(t,-x)$ for all $t>0$.

To see that such a solution exists, first make the assumption that $u(x, t)=\frac{1}{\alpha \sqrt{t}} v(\zeta)$, where $\zeta:=\frac{x}{\alpha \sqrt{t}}$, and v is a function of one variable, which is (hopefully) defined for all $\zeta \in \mathbb{R}$.
(a) Show that if u satisfies (1), v must satisfy the ODE $\frac{\mathrm{d}}{\mathrm{d} \zeta}\left[v^{\prime}(\zeta)+\frac{\zeta}{2} v(\zeta)\right]=0$.
(b) Using some of the conditions (i)-(iv) above, argue that v is an even function, that $v^{\prime}(0)=0$, and that $\lim _{\zeta \rightarrow \pm \infty} v(\zeta)=0$. Please specify which condition(s) you are using in each case.
(c) Show that v satisfies the $\operatorname{ODE} v^{\prime}(\zeta)+\frac{\zeta}{2} v(\zeta)=0$.
(d) Solve the equation for v derived in part (c); your answer will have the constant $v(0)$ which will be determined later. Write your result for v in terms of the function u.
(e) Use some of the conditions (i)-(iv) above to find $v(0)$, and write the final expression for the fundamental solution u of (1).
(f) In Remark 2 to Problem 5 of Homework 4 it was mentioned that the family of functions $\frac{1}{2 \sqrt{\pi \varepsilon}} \mathrm{e}^{-x^{2} /(4 \varepsilon)}$ (defined for all $\left.\varepsilon>0\right)$ converges to δ in $\mathscr{D}^{\prime}(\mathbb{R})$ as $\varepsilon \rightarrow 0^{+}$. Using this fact, find the limit of the fundamental solution of (1) found in part (e) as $t \rightarrow 0^{+}$, considered as a 1-parameter family of functions in $\mathscr{D}(\mathbb{R})$ (where the variable is $x \in \mathbb{R}$ and the parameter is $t>0$).

Problem 2. [Continuity of P.v. $\frac{1}{x}$ on $\mathscr{D}(\mathbb{R})$]

(a) Let F be a linear functional on $\mathscr{D}(\Omega)$. Recall that by definition the linear functional F is continuous if $\left\langle F, \phi_{k}\right\rangle \rightarrow\langle F, \phi\rangle$ as $k \rightarrow \infty$ for every sequence ϕ_{k} in $\mathscr{D}(\Omega)$ that converges to $\phi \in \mathscr{D}(\Omega)$ as $k \rightarrow \infty$. Explain why, in order to prove the continuity of F, it is enough to prove that $\left\langle F, \phi_{k}\right\rangle \rightarrow 0$ as $k \rightarrow \infty$ for every sequence ϕ_{k} in $\mathscr{D}(\Omega)$ that converges to 0 in $\mathscr{D}(\Omega)$ as $k \rightarrow \infty$.
(b) Prove that the linear functional P.v. $\frac{1}{x}$ on $\mathscr{D}(\mathbb{R})$ defined by

$$
\left\langle\text { P.v. } \frac{1}{x}, \phi\right\rangle:=\text { P.v. } \int \frac{\phi(x)}{x} \mathrm{~d} x, \quad \phi \in \mathscr{D}(\mathbb{R})
$$

is continuous.
Hint: Let $\phi_{k} \rightarrow 0$ in $\mathscr{D}(\mathbb{R})$. Write in detail what this means. Then start the proof of the continuity of P.v. $\frac{1}{x}$ as follows: let $\phi_{k} \in \mathscr{D}(\mathbb{R})$ be a sequence converging to 0 in $\mathscr{D}(\mathbb{R})$. Then, for any $R>0$ large enough so that the all ϕ_{k} are supported on $[-R, R]$,

$$
\left\lvert\,\left\langle\text { P.v. } \frac{1}{x}, \phi_{k}\right\rangle|=|\right. \text { P.v. } \int \frac{\phi_{k}(x)}{x} \mathrm{~d} x|\stackrel{*}{=}| \text { P.v. } \left.\int_{-R}^{R} \frac{\phi_{k}(0)+x \phi_{k}^{\prime}(y)}{x} \mathrm{~d} x \right\rvert\, \leq \cdots .
$$

What was used is the equality marked with $*$? Continue the above chain of (in)equalities to prove the continuity of P.v. $\frac{1}{x}$ on $\mathscr{D}(\mathbb{R})$, clearly indicating at each step what property you have used.

Problem 3. [Derivatives of a delta function]

Prove that $x^{m} \delta^{(k)}=0$ for $0 \leq k<m$.

Problem 4. $\left[\frac{\mathrm{d}}{\mathrm{d} x} \ln |x|=\right.$ P.v. $\frac{1}{x}$ in $\left.\mathscr{D}^{\prime}(\mathbb{R})\right]$
Let the function $u: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ be defined as $u(x):=\ln |x|$.
(a) Show that $u \in L_{\text {loc }}^{1}(\mathbb{R})$.

Hint: It is enough to show that $\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1}|\ln x| \mathrm{d} x<\infty$ and that $\int_{1}^{R} \ln x \mathrm{~d} x<\infty$ for every $R>1$.
(b) Prove that $u^{\prime}=$ P.v. $\frac{1}{x}$ in $\mathscr{D}^{\prime}(\mathbb{R})$.

Hint: For any $\phi \in \mathscr{D}(\mathbb{R})$ write

$$
\left\langle u^{\prime}, \phi\right\rangle=-\left\langle u, \phi^{\prime}\right\rangle=-\int \ln |x| \phi^{\prime}(x) \mathrm{d} x=-\lim _{\varepsilon \rightarrow 0^{+}} \int_{\{|x|>\varepsilon\}} \ln |x| \phi^{\prime}(x) \mathrm{d} x,
$$

and integrate by parts.

Problem 5. $\left[\Delta \ln |\mathrm{x}|=2 \pi \delta(\mathrm{x})\right.$ in $\left.\mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right)\right]$
In this problem you will show that

$$
\begin{equation*}
\Delta \ln |\mathbf{x}|=2 \pi \delta(\mathbf{x}), \quad \mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \tag{2}
\end{equation*}
$$

in $\mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right)$; here $|\mathbf{x}|:=\sqrt{x_{1}^{2}+x_{2}^{2}}$. It is easy to show that the function

$$
\begin{equation*}
u: \mathbb{R}^{2} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}: \mathbf{x} \mapsto \ln |\mathbf{x}| \tag{3}
\end{equation*}
$$

is $C^{\infty}\left(\mathbb{R}^{2} \backslash\{\mathbf{0}\}\right.$ (you do not need to show this here).
(a) Prove that, if you think of u defined in (3) as a C^{∞} function on $\mathbb{R}^{2} \backslash\{\mathbf{0}\}$, then

$$
\Delta u(\mathbf{x})=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r} \ln r\right), \quad \mathbf{x} \neq \mathbf{0}, \quad r:=|\mathbf{x}| .
$$

(b) Prove that the function u defined in (3) is in $L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$.

Hint: As in Problem 4(a), it is enough to show that $\lim _{\varepsilon \rightarrow 0^{+}} \int_{\{\varepsilon<|\mathbf{x}|<1\}}|\ln | \mathbf{x}| | \mathrm{d} \mathbf{x}<\infty$ and that $\lim _{\varepsilon \rightarrow 0^{+}} \int_{\{1<|\mathbf{x}|<R\}} \ln |\mathbf{x}| \mathrm{d} \mathbf{x}<\infty$ for every $R>1$; here $\mathrm{d} \mathbf{x}:=\mathrm{d} x_{1} \mathrm{~d} x_{2}$.
(c) Explain why u defined in (3) defines a distribution on $\mathscr{D}\left(\mathbb{R}^{2}\right)$.
(d) Prove the equality (2) in $\mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right)$.

Hint: Follow Example 7.7 on pages 380-382 of the book; use polar coordinates.

FFT ("Food for Thought") Problem 1. ${ }^{1}$ [Solutions of ODEs in $\mathscr{D}^{\prime}(\mathbb{R})$]
Show that the general solutions of the ODEs

$$
x y_{1}^{\prime}=1, \quad x^{2} y_{2}^{\prime}=0, \quad x^{2} y_{3}^{\prime}=1, \quad y_{4}^{\prime \prime}=\delta(x), \quad(x+1) y_{5}^{\prime \prime}=0
$$

in $\mathscr{D}^{\prime}(\mathbb{R})$ are the functions

$$
\begin{aligned}
& y_{1}(x)=C_{1}+C_{2} H(x)+\ln |x|, \quad y_{2}(x)=C_{1}+C_{2} H(x)+C_{3} \delta(x), \\
& y_{3}(x)=C_{1}+C_{2} H(x)+C_{3} \delta(x)-\text { P.v. } \frac{1}{x}, \\
& y_{4}(x)=C_{1}+C_{2} x+x H(x), \quad y_{5}(x)=C_{1}+C_{2} x+C_{3}(x+1) H(x+1) .
\end{aligned}
$$

FFT Problem 2. [Problems with multiplication of functions and distributions] Consider the function $x \in C^{\infty}(\mathbb{R})$ and the distributions P.v. $\frac{1}{x}, \delta \in \mathscr{D}^{\prime}(\mathbb{R})$. Prove that x P.v. $\frac{1}{x}=1$, while $x \delta(x)=0$, so (x P.v. $\frac{1}{x}$) $\delta(x)=\delta(x)$, while $(x \delta(x))$ P.v. $\frac{1}{x}=0$. This implies that multiplication of functions and distributions cannot be commutative and associative.

[^0]
[^0]: ${ }^{1}$ FFT, i.e., "Food for Thought", problems are for you to think about, but not to turn in with the regular homework.

