Problem 1. [Fundamental solution of the heat equation on \mathbb{R}^{1+1}]

In this problem you will derive the so-called *fundamental solution* of the heat equation on \mathbb{R}^{1+1} , i.e., in one spatial dimension (x) and one temporal dimension (t). Write the heat equation as

$$u_t(x,t) = \alpha^2 u_{xx}(x,t) , \qquad x \in \mathbb{R}, \quad t \in (0,\infty) , \qquad (1)$$

where α is a positive constant. We demand that the fundamental solution have the following properties:

- (i) $u(x,t) \ge 0;$
- (ii) $u(\cdot, t) \in C^{\infty}(\mathbb{R})$ for all t > 0;
- (iii) $\int_{\mathbb{R}} u(x,t) \, \mathrm{d}x = 1$ for all t > 0;
- (iv) $\lim_{x \to +\infty} u(t, x) = 0$ for all t > 0;
- (v) u(t,x) = u(t,-x) for all t > 0.

To see that such a solution exists, first make the assumption that $u(x,t) = \frac{1}{\alpha\sqrt{t}}v(\zeta)$, where $\zeta \coloneqq \frac{x}{\alpha\sqrt{t}}$, and v is a function of one variable, which is (hopefully) defined for all $\zeta \in \mathbb{R}$.

- (a) Show that if u satisfies (1), v must satisfy the ODE $\frac{d}{d\zeta} \left[v'(\zeta) + \frac{\zeta}{2} v(\zeta) \right] = 0.$
- (b) Using some of the conditions (i)–(iv) above, argue that v is an even function, that v'(0) = 0, and that $\lim_{\zeta \to \pm \infty} v(\zeta) = 0$. Please specify which condition(s) you are using in each case.
- (c) Show that v satisfies the ODE $v'(\zeta) + \frac{\zeta}{2}v(\zeta) = 0$.
- (d) Solve the equation for v derived in part (c); your answer will have the constant v(0) which will be determined later. Write your result for v in terms of the function u.
- (e) Use some of the conditions (i)–(iv) above to find v(0), and write the final expression for the fundamental solution u of (1).
- (f) In Remark 2 to Problem 5 of Homework 4 it was mentioned that the family of functions $\frac{1}{2\sqrt{\pi\varepsilon}}e^{-x^2/(4\varepsilon)}$ (defined for all $\varepsilon > 0$) converges to δ in $\mathscr{D}'(\mathbb{R})$ as $\varepsilon \to 0^+$. Using this fact, find the limit of the fundamental solution of (1) found in part (e) as $t \to 0^+$, considered as a 1-parameter family of functions in $\mathscr{D}(\mathbb{R})$ (where the variable is $x \in \mathbb{R}$ and the parameter is t > 0).

Problem 2. [Continuity of P.v. $\frac{1}{x}$ on $\mathscr{D}(\mathbb{R})$]

- (a) Let F be a linear functional on $\mathscr{D}(\Omega)$. Recall that by definition the linear functional F is continuous if $\langle F, \phi_k \rangle \to \langle F, \phi \rangle$ as $k \to \infty$ for every sequence ϕ_k in $\mathscr{D}(\Omega)$ that converges to $\phi \in \mathscr{D}(\Omega)$ as $k \to \infty$. Explain why, in order to prove the continuity of F, it is enough to prove that $\langle F, \phi_k \rangle \to 0$ as $k \to \infty$ for every sequence ϕ_k in $\mathscr{D}(\Omega)$ that converges to 0 in $\mathscr{D}(\Omega)$ as $k \to \infty$.
- (b) Prove that the linear functional P.v. $\frac{1}{x}$ on $\mathscr{D}(\mathbb{R})$ defined by

$$\left(\mathrm{P.v.}\frac{1}{x},\phi\right) \coloneqq \mathrm{P.v.}\int \frac{\phi(x)}{x}\,\mathrm{d}x\,,\qquad\phi\in\mathscr{D}(\mathbb{R})$$

is continuous.

Hint: Let $\phi_k \to 0$ in $\mathscr{D}(\mathbb{R})$. Write in detail what this means. Then start the proof of the continuity of P.v. $\frac{1}{x}$ as follows: let $\phi_k \in \mathscr{D}(\mathbb{R})$ be a sequence converging to 0 in $\mathscr{D}(\mathbb{R})$. Then, for any R > 0 large enough so that the all ϕ_k are supported on [-R, R],

$$\left|\left\langle \mathbf{P}.\mathbf{v}.\frac{1}{x},\phi_{k}\right\rangle\right| = \left|\mathbf{P}.\mathbf{v}.\int\frac{\phi_{k}(x)}{x}\,\mathrm{d}x\right| \stackrel{*}{=} \left|\mathbf{P}.\mathbf{v}.\int_{-R}^{R}\frac{\phi_{k}(0) + x\phi_{k}'(y)}{x}\,\mathrm{d}x\right| \leq \cdots$$

What was used is the equality marked with *? Continue the above chain of (in)equalities to prove the continuity of P.v. $\frac{1}{x}$ on $\mathscr{D}(\mathbb{R})$, clearly indicating at each step what property you have used.

Problem 3. [Derivatives of a delta function]

Prove that $x^m \delta^{(k)} = 0$ for $0 \le k < m$.

Problem 4. $\left[\frac{\mathrm{d}}{\mathrm{d}x}\ln|x| = \mathrm{P.v.}\frac{1}{x} \text{ in } \mathscr{D}'(\mathbb{R})\right]$ Let the function $u: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be defined as $u(x) \coloneqq \ln|x|$.

(a) Show that $u \in L^1_{loc}(\mathbb{R})$.

Hint: It is enough to show that $\lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{1} |\ln x| \, dx < \infty$ and that $\int_{1}^{R} \ln x \, dx < \infty$ for every R > 1.

(b) Prove that $u' = P.v.\frac{1}{x}$ in $\mathscr{D}'(\mathbb{R})$.

Hint: For any $\phi \in \mathscr{D}(\mathbb{R})$ write

$$\langle u',\phi\rangle = -\langle u,\phi'\rangle = -\int \ln|x|\phi'(x)\,\mathrm{d}x = -\lim_{\varepsilon\to 0^+}\int_{\{|x|>\varepsilon\}}\ln|x|\phi'(x)\,\mathrm{d}x \ ,$$

and integrate by parts.

Problem 5. $[\Delta \ln |\mathbf{x}| = 2\pi \delta(\mathbf{x}) \text{ in } \mathscr{D}'(\mathbb{R}^2)]$

In this problem you will show that

$$\Delta \ln |\mathbf{x}| = 2\pi \delta(\mathbf{x}) , \qquad \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$$
 (2)

in $\mathscr{D}'(\mathbb{R}^2)$; here $|\mathbf{x}| \coloneqq \sqrt{x_1^2 + x_2^2}$. It is easy to show that the function

$$u: \mathbb{R}^2 \setminus \{\mathbf{0}\} \to \mathbb{R}: \mathbf{x} \mapsto \ln |\mathbf{x}| \tag{3}$$

is $C^{\infty}(\mathbb{R}^2 \setminus \{\mathbf{0}\})$ (you do not need to show this here).

(a) Prove that, if you think of u defined in (3) as a C^{∞} function on $\mathbb{R}^2 \setminus \{\mathbf{0}\}$, then

$$\Delta u(\mathbf{x}) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \ln r \right) , \qquad \mathbf{x} \neq \mathbf{0} , \quad r \coloneqq |\mathbf{x}| .$$

(b) Prove that the function u defined in (3) is in $L^1_{loc}(\mathbb{R}^2)$.

Hint: As in Problem 4(a), it is enough to show that $\lim_{\varepsilon \to 0^+} \int_{\{\varepsilon < |\mathbf{x}| < 1\}} |\ln |\mathbf{x}|| \, d\mathbf{x} < \infty \text{ and}$ that $\lim_{\varepsilon \to 0^+} \int_{\{1 < |\mathbf{x}| < R\}} \ln |\mathbf{x}| \, d\mathbf{x} < \infty \text{ for every } R > 1; \text{ here } d\mathbf{x} := dx_1 \, dx_2.$

- (c) Explain why u defined in (3) defines a distribution on $\mathscr{D}(\mathbb{R}^2)$.
- (d) Prove the equality (2) in $\mathscr{D}'(\mathbb{R}^2)$.

Hint: Follow Example 7.7 on pages 380–382 of the book; use polar coordinates.

FFT ("Food for Thought") Problem 1.¹ [Solutions of ODEs in $\mathscr{D}'(\mathbb{R})$] Show that the general solutions of the ODEs

 $xy_1'=1\ ,\qquad x^2y_2'=0\ ,\qquad x^2y_3'=1\ ,\qquad y_4''=\delta(x)\ ,\qquad (x+1)y_5''=0$ in $\mathscr{D}'(\mathbb{R})$ are the functions

$$y_1(x) = C_1 + C_2 H(x) + \ln |x| , \qquad y_2(x) = C_1 + C_2 H(x) + C_3 \delta(x) ,$$

$$y_3(x) = C_1 + C_2 H(x) + C_3 \delta(x) - P.v.\frac{1}{x} ,$$

$$y_4(x) = C_1 + C_2 x + x H(x) , \qquad y_5(x) = C_1 + C_2 x + C_3 (x+1) H(x+1)$$

FFT Problem 2. [Problems with multiplication of functions and distributions] Consider the function $x \in C^{\infty}(\mathbb{R})$ and the distributions $\operatorname{P.v.}_{\frac{1}{x}}, \delta \in \mathscr{D}'(\mathbb{R})$. Prove that $x \operatorname{P.v.}_{\frac{1}{x}} = 1$, while $x\delta(x) = 0$, so $(x \operatorname{P.v.}_{\frac{1}{x}})\delta(x) = \delta(x)$, while $(x\delta(x))\operatorname{P.v.}_{\frac{1}{x}} = 0$. This implies that multiplication of functions and distributions cannot be commutative and associative.

¹FFT, i.e., "Food for Thought", problems are for you to think about, but not to turn in with the regular homework.