
MATH 4093/5093 Homework 5 NOT Due Fri, 10/08/10

Problem 1. Assume that the sequence {pn}∞n=0 is generated by some iterative method
for finding a root of an equation. Also assume that we know that the sequence {pn}∞n=0

converges to some number p of some order α with some asymptotic error constant λ, but
we don’t know the values of α and λ. The goal of this problem is to develop a method
for determining the numerical value of α from the numerical values of the members of the
sequence {pn}∞n=0.

Let En := |pn − p| be the error at the nth step of the iteration, and define `n := ln En.

(a) Show that for large n, the following approximate identity holds:

`n − α`n−1 ≈ ln λ .

Hint: Just look at the definition of order of convergence.

(b) Using the approximate identity derived in (a) show that

α ≈ `n − `n+1

`n−1 − `n

.

Note that this approximate formula for α does not depend on the base of the logarithms;
if `n is defined as the log base 10 of En, the formula will remain the same.

(c) The following Mathematica code

f[x_] := Sin[x] + x - 1;

p = N[1, 10000];

For[ i = 1, i <= 20, i++,

{ p = p - f[p] / f’[p],

}

]

exactvalue = p;

Print[N[exactvalue, 50]]

]

uses the Newton’s method to compute the root of the equation

sin x + x = 1 , (1)

starting from the value p0 = 1, and performing 20 steps of Newton’s iteration; the
computations are performed with 10000 decimal digits of accuracy. The result is save
as the variable exact, and 50 digits of exact are printed, so that the output is the
“exact” (with 10000 digits) value of root of sin x + x = 1:

exact = 0.51097342938856910952001397114508063204535889262375
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Having computed the “exact” value of the root of (1), I used it to study the performance
of several numerical methods for computing roots of equations.

First I ran the Mathematica code

p = N[1, 10000];

For[ i = 1, i <= 16, i++,

{ p = p - f[p] / f’[p],

error = Abs[p - exactvalue],

Print[ i, " ", N[Log[error]/Log[10], 10]]

}

]

which performed Newton’s iteration for solving the same equation as above, with start-
ing value p0 = 1, and printed the logarithm (base 10) of the value of the absolute error,
|pn − pexact| for each step. The results are given in Table 1 below (“Indeterminate”
means that the accuracy of 10000 digits was not enough).

The Mathematica code

p0 = N[0, 10000];

p1 = N[1, 10000];

For[ i = 1, i 16, i++,

{ p = p1 - f[p1]*(p1 - p0)/(f[p1] - f[p0]),

error = Abs[p - exactvalue],

Print[ i, " ", N[ Log[error]/Log[10]], 10] ],

p0 = p1,

p1 = p

}

]

used the secant method for solving (1), with starting values p0 = 0 and p1 = 1; the
output has the same format as the one of the Newton’s method and is presented in
Table 1.

Finally, I wrote equation (1) as a fixed-point problem, g(p) = p, where g(x) = x −
f(x) = x − (sin x + x − 1) = 1 − sin x, and solved it using Mathematica with initial
value p0 = 0.5:

g[x_] := 1 - Sin[x];

p = N[1/2, 10000];

For[ i = 1, i <= 50, i++,

{ p = g[p],

error = Abs[p - exactvalue],

Print[i, " ", N[Log[error]/Log[10], 10]]

}

]
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Table 1: Results of the Newton’s and secant methods, and an FPI for solving (1).

n log10 |pn − pexact|, Newton’s log10 |pn − n− pexact|, secant log10 |pn − n− pexact|, FPI
1 −1.242027932 −1.493891618 −2.017682082
2 −3.405246446 −2.540518867 −2.078208795
3 −7.694806441 −4.909346984 −2.136547863
4 −16.27367865 −8.334835543 −2.196791228
5 −33.43142307 −14.12824440 −2.255370626
6 −67.74691190 −23.34714570 −2.315399191
7 −136.3778896 −38.35945587 −2.374162006
8 −273.6398449 −62.59066733 −2.434027590
9 −548.1637555 −101.8341890 −2.492930284

10 −1097.211577 −165.3089221 −2.552672122
11 −2195.307219 −268.0271768 −2.611681434
12 −4391.498504 −434.2201646 −2.671329270
13 −8783.881074 −703.1314071 −2.730419812
14 Indeterminate −1138.235637 −2.789996212
15 Indeterminate −1842.251110 −2.849148622
16 Indeterminate −2981.370814 −2.908670720

Use the formula for α derived in part (b) to find empirically the numerical values of α
for the three methods above, using the results from Table 1. Does the values of α you
have obtained match the theoretical predictions? Discuss briefly. One can prove (but
you do not need to do this!) that the order of convergence of the secant method is

α
(theor)
secant =

1

2
(
√

5 + 1) ≈ 1.61803398874 . . . .

Problem 2. Recall that the multiplicity of a zero p of the function f is defined as the
number m such that

f(x) = (x− p)m q(x) ,

where q is a function satisfying lim
x→p

q(x) 6= 0.

Recall also that Newton’s method for finding a zero of the function f (or, equivalently, a
root of the equation f(x) = 0) is based on the iterative procedure pn+1 = g(pn), where p0 is
some starting value, and

g(x) = x− f(x)

f ′(x)
.
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We stated in class that, if p is a simple zero of f (i.e., a zero of multiplicity 1) and the
Newton’s method converges to p, then the convergence is at least quadratic, i.e., or order
α ≥ 2.

If, however, the zero of f is non-simple, then the Newton’s method converges only linearly.

In class we proved that, if p is a fixed point of the function g and g′(p) 6= 0, then if the
iteration pn+1 = g(pn) converges to p, then the convergence is linear (and λ = |g′(p)|).
In this problem you will show that, indeed, the Newton’s method converges linearly for
m ≥ 2, and will find a modification of Newton’s method that works with multiple zeros
(but one needs to know the multiplicity of the zero and pass it to the program as one of the
arguments).

Let p be a zero of multiplicity m ≥ 2 of f . Then the Newton’s iteration for finding a zero of
f has the form

g(x) = x− f(x)

f ′(x)

= x− (x− p)mq(x)

[(x− p)mq(x)]′

= x− (x− p)mq(x)

m(x− p)m−1q(x) + (x− p)mq′(x)

= x− (x− p)
q(x)

mq(x) + (x− p)q′(x)
,

therefore

g′(x) = 1− q(x)

mq(x) + (x− p)q′(x)
− (x− p)

d

dx

(
q(x)

mq(x) + (x− p)q′(x)

)
.

This implies that

g′(p) = 1− 1

m
6= 0 ,

hence the convergence of Newton’s method is only linear.

(a) Let p be a zero of multiplicity m ≥ 2 of f . Consider the following modification of the
Newton’s method: pn+1 = g(pn), where

g(x) = x−m
f(x)

f ′(x)
.

Show that in this case g′(p) = 0, hence the convergence is faster than linear.

(b) Show that the multiplicity of the root π
2

of the equation (x− π
2
)(1−sin x) = 0 is m = 3.

Hint: Expand sin x in a Taylor series around x0 = π
2
.

(c) The following Mathematica code (similar to the codes from Problem 1)
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p = N[3, 50000];

m = 3;

f[x_] := (x - Pi/2) * (1-Sin[x]);

For[i = 1, i <= 10, i++,

{ p = p - m*f[p]/f’[p],

error = Abs[p - Pi/2],

Print[i, " ", N[Log[error],10]]

}

]

can be used to find empirically the order of convergence of the method. Here is the
output:

1 -0.7204139049

2 -3.415376010

3 -11.50140053

4 -35.75947410

5 -108.5336948

6 -326.8563569

7 -981.8243432

8 -2946.728302

9 -8841.440179

10 -26525.57581

What is the order of the convergence that you observe? Explain briefly your reasoning.
(Note that we are doing the calculations with accuracy or 50000 decimal digits!)

(d) The number π
2

is a root of the equation (x− π
2
)3 (1− sin x) = 0 of multiplicity 5. The

Mathematica code from part (c) can be modified appropriately find empirically the
order of convergence in this case. The output is given below. What do you observe?

1 -0.9648058725

2 -4.371283436

3 -14.59097156

4 -45.25003594

5 -137.2272291

6 -413.1588085

7 -1240.953547

8 -3724.337761

9 -11174.49041

10 Indeterminate

(e) Modify the Matlab code newton.m to write a code newton_m.m that implements the
algorithm from part (a) for finding zeros of multiplicity m of the equation f(x) = 0.
The first line of your code must be

function r = newton_m( fun, funder, m, xinit, tol, nmax, verbose)
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(f) One can estimate roughly the order of convergence m of an iterative method as follows.
If after iterating enough number of times the error is significantly smaller than 1 (say,
0.01 or smaller), then the number of correct digits of pn+1 is roughly m times the
number of correct digits of pn. You can observe this, in the following quadratically
convergent sequence (coming from using Newton’s method to find 3

√
12 as a root of the

equation x3 − 12 = 0).

1.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

4.666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666

3.294784580498866213151927437641723356009070294784580498866213151927437641723356009070294784580498866

2.564996283933496822279640898870787662335200127188373868695090191534036878441096931206491314332028214

2.317973627725310965894671183077646390006759422097600376823322683758217378024541415220574391246824662

2.289778566911922285264949690307277524808339353864854224824331811491750945243930217290781459861111391

2.289428538627570193775919893742118572719030429524354378801546408311322845023342839603272971787615841

2.289428485106664986796174761541083407108687502501926456729710419471508178918399015462717660858495387

2.289428485106663735616084423880037791808000926685328369417780029499568633251106146440076011857659331

2.289428485106663735616084423879354017831813841575862144198104552351246075611950964542191974634843603

2.289428485106663735616084423879354017831813841575862144198104348131348598048428300875216322061834091

2.289428485106663735616084423879354017831813841575862144198104348131348598048428300875216322061834091

Give a theoretical explanation of this rule of thumb.

Hint: For example, in the number 2.289428485106664986796 . . . in the sequence above,
you know the result with 8 correct digits after the decimal point: 2.28942848510666;
the next one, 2.28942848510666373561608442388003779 . . ., has 28 correct digits after
the decimal point, namely, 2.2894284851066637356160844238. If you know a number
pn with k digits of accuracy, what can you say about log10 |pn − p|?
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