Problem 1. Assume that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ converges on $(-R, R)$.
(a) Show that the function $F(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}$ is defined on $(-R, R)$.
(b) Show that the function F satisfies $F^{\prime}(x)=f(x)$.
(c) Antiderivatives are not unique. If g is an arbitrary function satisfying $g^{\prime}(x)=f(x)$ on $(-R, R)$, find a power series representation for g.

Problem 2.

(a) If the number s satisfies $0<s<1$, show that $n s^{n-1}$ is bounded for all $n \geq 1$. Hint: Look at the ratio of two consecutive terms, $\frac{(n+1) s^{n}}{n s^{n-1}}$ - how does it behave for very large values of n ?
(b) Given an arbitrary $x \in(-R, R)$, pick t to satisfy $|x|<t<R$. Prove that the series $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ converges, which will provide a proof of Theorem 6.5.6 of Abbott's book.
Hint: One way to show the convergence is to note that

$$
\sum_{n=1}^{\infty}\left|n a_{n} x^{n-1}\right|=\sum_{n=1}^{\infty} \frac{1}{t}\left(n\left|\frac{x}{t}\right|^{n-1}\right)\left|a_{n} t^{n}\right|
$$

and to use the result from part (a) with $s=\left|\frac{x}{t}\right|$.

Problem 3. A series $\sum_{n=0}^{\infty} a_{n}$ is called Abel summable to L if the power series $f(x):=\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for all $x \in[0,1)$ and $L=\lim _{x \rightarrow 1^{-}} f(x)$.
(a) Show that any series that converges to a limit L is also Abel summable. Please give a clear and detailed argument.
Hint: Assume that $\sum a_{n}$ converges to L. What does this imply about the convergence of the power series $f(x)=\sum a_{n} x^{n}$ at $x=1$? What does Abel's Theorem imply about the convergence of the power series on $[0,1]$? What can you conclude about the properties of f on $[0,1]$? What does this imply about the limit of $f(x)$ as $x \rightarrow 1^{-}$?
(b) Show that the series $\sum_{n=0}^{\infty}(-1)^{n}$ is Abel summable and find its sum.

Hint: The formula for the geometric series will be useful.

Problem 4.

(a) The derivation of the Taylor series for $\arctan x$ is valid for all $x \in(-1,1)$. Notice, however, that the series also converges for $x=1$. What does Abel's Theorem imply about the convergence of the power series over the interval $[0,1]$? Remark: Note that Theorem 6.5.2 will not be enough in this case.
(b) What can you conclude about the continuity of arctan on $[0,1]$? Which theorem from the book helps you come to this conclusion?
(c) Use your result from part (b) to explain why the value of the series for $\arctan x$ at $x=1$ must necessarily be $\arctan 1$.
(d) What identity do you get for $x=1$? (It is sometimes called the Leibniz's identity.)

Problem 5. Recall the Taylor series of $\cos y$ for $y \in \mathbb{R}, \frac{1}{1+y^{2}}$ for $y \in(-1,1)$, and $\ln (1+y)$ for $y \in(-1,1]$. The series of $\ln (1+y)$ is obtained by antidifferentiating

$$
\frac{1}{1+y}=\frac{1}{1-(-y)}=1-y+y^{2}-y^{3}+y^{4}-\cdots .
$$

Manipulate these series to obtain Taylor series representations for each of the following functions. In each case, write down the interval in which the series converges.
(a) $f(x)=x \cos \left(x^{2}\right)$
(b) $g(x)=\frac{x}{\left(1+4 x^{2}\right)^{2}}$
(c) $h(x)=\ln \left(1+x^{2}\right)$

Problem 6. In this problem you will demonstrate that, if we take the power series representation of the exponential function to be its definition, then familiar statements like $(\exp x)^{\prime}=\exp x$ and $\exp (-x)=(\exp x)^{-1}$ follow naturally.
Define the function $\exp x$ by its Taylor series representation, $\exp x:=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(a) Prove that the Taylor series of $\exp x$ converges uniformly on any interval $[-R, R]$.
(b) Use the Term-by-term Differentiability Theorem to find the derivative of $\exp x$.
(c) Recall that the Cauchy product of two series, $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ is defined as the series $\sum_{n=0}^{\infty} c_{n}$, where $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$. Find the Cauchy product of $\exp x=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ and $\exp (-x)=\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}$. You will need to use Newton's binomial formula,

$$
(1+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} y^{k},
$$

where $\binom{n}{k}:=\frac{n!}{k!(n-k)!}$ are the binomial coefficients $(0!:=1)$ to show that all coefficients in the Cauchy product of the series for $\exp x$ and $\exp (-x)$ but the constant one are zero.

Food for Thought: Abbott, Exercises 6.5.1, 6.5.6, 6.6.7.
Hint for Abbott, Exercise 6.6.7:
(a) One example would be the function $g(x)=\frac{1}{1+x^{2}}$ considered in class.
(b) Let $h(x)=\sin x+g(x)$, where $g(x)$ is the "Counterexample" function from page 203.
(c) Let

$$
f(x)= \begin{cases}0 & \text { for } x \leq 0 \\ e^{-1 / x^{2}} & \text { for } x>0\end{cases}
$$

