MATH 4443

Homework 5

Problem 1. Assume that
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 converges on $(-R, R)$.

- (a) Show that the function $F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ is defined on (-R, R).
- (b) Show that the function F satisfies F'(x) = f(x).
- (c) Antiderivatives are not unique. If g is an arbitrary function satisfying g'(x) = f(x) on (-R, R), find a power series representation for g.

Problem 2.

- (a) If the number s satisfies 0 < s < 1, show that nsⁿ⁻¹ is bounded for all n ≥ 1.
 Hint: Look at the ratio of two consecutive terms, (n+1)sⁿ/nsⁿ⁻¹ how does it behave for very large values of n?
- (b) Given an arbitrary $x \in (-R, R)$, pick t to satisfy |x| < t < R. Prove that the series $\sum_{n=1}^{\infty} na_n x^{n-1}$ converges, which will provide a proof of Theorem 6.5.6 of Abbott's book.

Hint: One way to show the convergence is to note that

$$\sum_{n=1}^{\infty} |na_n x^{n-1}| = \sum_{n=1}^{\infty} \frac{1}{t} \left(n \left| \frac{x}{t} \right|^{n-1} \right) |a_n t^n| ,$$

and to use the result from part (a) with $s = \left| \frac{x}{t} \right|$.

Problem 3. A series $\sum_{n=0}^{\infty} a_n$ is called *Abel summable to L* if the power series $f(x) := \sum_{n=0}^{\infty} a_n x^n$ converges for all $x \in [0, 1)$ and $L = \lim_{x \to 1^-} f(x)$.

(a) Show that any series that converges to a limit L is also Abel summable. Please give a clear and detailed argument.

Hint: Assume that $\sum a_n$ converges to L. What does this imply about the convergence of the power series $f(x) = \sum a_n x^n$ at x = 1? What does Abel's Theorem imply about the convergence of the power series on [0, 1]? What can you conclude about the properties of f on [0, 1]? What does this imply about the limit of f(x) as $x \to 1^{-2}$?

(b) Show that the series $\sum_{n=0}^{\infty} (-1)^n$ is Abel summable and find its sum. *Hint:* The formula for the geometric series will be useful.

Problem 4.

(a) The derivation of the Taylor series for $\arctan x$ is valid for all $x \in (-1, 1)$. Notice, however, that the series also converges for x = 1. What does Abel's Theorem imply about the convergence of the power series over the interval [0, 1]?

Remark: Note that Theorem 6.5.2 will not be enough in this case.

- (b) What can you conclude about the continuity of arctan on [0, 1]? Which theorem from the book helps you come to this conclusion?
- (c) Use your result from part (b) to explain why the value of the series for $\arctan x$ at x = 1 must necessarily be $\arctan 1$.
- (d) What identity do you get for x = 1? (It is sometimes called the *Leibniz's identity*.)

Problem 5. Recall the Taylor series of $\cos y$ for $y \in \mathbb{R}$, $\frac{1}{1+y^2}$ for $y \in (-1,1)$, and $\ln(1+y)$ for $y \in (-1,1]$. The series of $\ln(1+y)$ is obtained by antidifferentiating

$$\frac{1}{1+y} = \frac{1}{1-(-y)} = 1 - y + y^2 - y^3 + y^4 - \cdots$$

Manipulate these series to obtain Taylor series representations for each of the following functions. In each case, write down the interval in which the series converges.

(a)
$$f(x) = x \cos(x^2)$$
 (b) $g(x) = \frac{x}{(1+4x^2)^2}$ (c) $h(x) = \ln(1+x^2)$

Problem 6. In this problem you will demonstrate that, if we take the power series representation of the exponential function to be its definition, then familiar statements like $(\exp x)' = \exp x$ and $\exp(-x) = (\exp x)^{-1}$ follow naturally.

Define the function $\exp x$ by its Taylor series representation, $\exp x := \sum_{n=0}^{\infty} \frac{x^n}{n!}$

- (a) Prove that the Taylor series of $\exp x$ converges uniformly on any interval [-R, R].
- (b) Use the Term-by-term Differentiability Theorem to find the derivative of $\exp x$.

(c) Recall that the *Cauchy product* of two series, $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ is defined as the se-

ries $\sum_{n=0}^{\infty} c_n$, where $c_n = \sum_{k=0}^{n} a_k b_{n-k}$. Find the Cauchy product of $\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ and $\exp(-x) = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!}$. You will need to use Newton's binomial formula,

$$(1+y)^n = \sum_{k=0}^n \binom{n}{k} y^k$$

where $\binom{n}{k} := \frac{n!}{k! (n-k)!}$ are the binomial coefficients (0! := 1) to show that all coefficients in the Cauchy product of the series for $\exp x$ and $\exp(-x)$ but the constant one are zero.

Food for Thought: Abbott, Exercises 6.5.1, 6.5.6, 6.6.7.

Hint for Abbott, Exercise 6.6.7:

(a) One example would be the function $g(x) = \frac{1}{1+x^2}$ considered in class.

(b) Let $h(x) = \sin x + g(x)$, where g(x) is the "Counterexample" function from page 203. (c) Let

$$f(x) = \begin{cases} 0 & \text{for } x \le 0, \\ e^{-1/x^2} & \text{for } x > 0. \end{cases}$$