
MATH 4193/5103 Homework 5 Due Thu, May 2, 2013

Problem 1. [Scaling near a homoclinic bifurcation]

To find how the period of a closed orbit scales as a homoclinic bifurcation is approached,
one can perform a simple estimate of the time it takes for a trajectory to pass near a saddle
point – this time is the “bottleneck”, i.e., it is much longer than the time it takes to traverse
the rest of the closed orbit. Suppose that the system is given locally by

ẋ ≈ λux , ẏ ≈ −λsy , (1)

where λu and λs are positive constants. Clearly, (0, 0) is a fixed point of the system (1), and
the unstable, W u

(0,0), and stable, W s
(0,0), manifolds of this fixed point are (approximately) the

x-axis and the y-axis, respectively.

Let a trajectory pass through the point (µ, 1), where 0 < µ � 1 is the distance from the
stable manifold. How long does it take until the trajectory has escaped from the saddle point
(0, 0), say, out to x(t) = 1?

Problem 2. [Perturbed motion in a central force and quasiperiodicity]

Consider a particle of negligible size moving in R3 that is being acted upon by a central force,
i.e., a force that at any moment of time is directed towards a fixed point in R3; without loss
of generality, let us assume that this point is the origin, (0, 0, 0) ∈ R3. An important physical
example of such situation is the so-called Kepler problem, in which the force acting on the
particle is inversely proportional to the square of the distance between the particle and the
origin.

A very useful fact about central forces is that the angular momentum of the motion of the
particle is conserved (i.e., constant with time). This implies that the motion of the particle
in a central force always occurs in a fixed plane, so that one can forget about the third
dimension, and consider the motion of the particle in R2.

The equations governing the motion of the particle can be written in polar coordinates in
the form

r̈ = −F (r)

m
+

L2

m2r3
, θ̇ =

L

mr2
, (2)

where F (r) is the magnitude of the attracting force, m is the mass of the particle, and

L = const > 0 is the angular momentum (the unit for L is kgm2

s
); as explained above, L does

not change with time. As usual, r(t) and θ(t) stand for the polar coordinates of the particle
at time t. A derivation of (2) can be found, e.g., in L.D. Landau, E.M. Lifshitz, Mechanics,
3rd ed., Butterworth-Heinemann, 1976, Sections 14 and 15.

In this problem you will consider the motion of a particle that occurs near a periodic trajec-
tory. You will study two cases – Case A, in which the attracting force is gravity (F (r) ∼ r−2),
and Case B, in which case the attracting force has a constant magnitude (F (r) = k = const).
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(A0) When the motion of the particle is governed by Newton’s law of gravity, the equations
(2) have the form

r̈ = −GM
r2

+
L2

m2r3
, θ̇ =

L

mr2
, (3)

where G denotes Newton’s constant of gravitation (measured in m3

kg s2
), and M is the

mass of the large attracting body at the origin of the coordinate system.

(A1) Show that the system (3) has a solution r = r0, θ̇ = ωθ, corresponding to uniform
circular motion at a radius r0 and angular frequency ωθ (hence, the period of the
angular motion of the system is 2π

ωθ
). Express r0 and ωθ in terms of G, M , m, and L.

Hint: You will obtain that r0 = L2

GMm2 .

(A2) Now assume that the uniform circular motion of the particle is slightly perturbed in
radial direction, i.e., that r(t) = r0 +u(t), where r0 is the expression found in part (A1)
and u(t) is a small perburbation, such that |u(t)| � r0. Substitute r(t) = r0 + u(t) in
the equation for r(t) in (3) and obtain a second-order linear differential equation for

u(t), keeping only linear with respect to u(t)
r0

terms in the right-hand side. You can use
that, if x is much smaller than 1, then

(1 + x)α ≈ 1 + αx for any α ∈ R .

You will obtain that u(t) satisfies the harmonic oscillator equation with frequency
ωr = G2M2m3

L3 . Please write your calculations in detail.

(A3) What is the ratio of the frequencies ωθ (found in part (A1)) and ωr (found in part (A2))?

Remark: It will turn out that the ratio ωr
ωθ

is a rational number. If you think of the pair

of periodic functions u(t) and θ(t) as taking values in the two-dimensional torus, i.e.,
(u(t), θ(t)) ∈ T2, then the fact that ωr

ωθ
is a rational number implies that the trajectory

{(u(t), θ(t)) : t ∈ R} is a closed line in T2. The fact that the perturbed trajectory is
again closed is, as it turns out, a quite exceptional property of the Newton’s law of
gravity.

(B0) Now assume that the force with which the particle is attracted to the origin is constant;
in this case the motion of the particle is described by the equations

r̈ = − k
m

+
L2

m2r3
, θ̇ =

L

mr2
, (4)

where k is a positive constant (measured in kgm
s2

).

(B1) Show that the system (4) has a solution r = r0, θ̇ = ωθ, corresponding to uniform
circular motion at a radius r0 and angular frequency ωθ. Express r0 and ωθ in terms
of k, m, and L.

Hint: Clearly, the expressions you will obtain will differ from the ones obtained in
part (A1).
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(B2) Repeat what you did in part (A2) for the system (4) (using the expressions obtained
in part (B1)), to find the frequency ωr of the oscillation of the perturbation u(t) to the
uniform circular motion.

(B3) What is the ratio of the frequencies ωθ (found in part (B1)) and ωr (found in part (B2))?

Remark: In this case the ratio of the two frequencies will be an irrational number,
which corresponds to a quasiperiodic motion on the two-dimensional torus, so that the
trajectory {(u(t), θ(t)) : t ∈ R} will fill T2 densely (and will never close).

Problem 3. [A very simple Poincaré map]

Consider the system
θ̇ = 1 , ẏ = ay (5)

on the cylinder S1 × R, i.e., θ(t) belongs to the circle S1, while y(t) ∈ R. The number a is
an arbitrary real constant.

Define an appropriate Poincaré map and find a formula for it. Show that the system (5) has
a periodic orbit. Classify the stability of this periodic orbit for all real values of a.

Problem 4. [A more complicated Poincaré map]

Consider the system
ṙ = r − r2 , θ̇ = 1 , (6)

where (r, θ) are the polar coordinates in R2.

(a) Find the solution (r(t), θ(t)) of (6), with initial conditions (r(0), θ(0)) = (r0, θ0).

Hint: The following identity may be useful:
1

r(1− r)
=

1

r
+

1

1− r
.

(b) Let the surface of section, Σ, be the positive x-axis (i.e., the set of points with θ = 0).
Compute the Poincaré map from Σ to itself.

(c) Show that the Poincaré map P : Σ→ Σ obtained in part (b) has a unique fixed point.

(d) Classify the stability of the fixed point of P found in part (c).

Hint: You may find useful the fact that
d

dξ

1

1 + e−2π(1
ξ
− 1)

=
e−2π

ξ2
[
1 + e−2π(1

ξ
− 1)

]2 .

(e) Interpret your results from parts (c) and (d) in terms of the existence and stability of
a periodic orbit of the system (6).

(f) Find the Floquet multiplier for the periodic orbit.

Hint: The Floquet multipliers (or characteristic multipliers) of a periodic orbits are by

definition of the eigenvalues of the matrix D~P (~ξ∗) (where ~ξ∗ ∈ Σ is the point where
the periodic orbit intersects the surface of section Σ); see page 282 of Strogatz.
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Problem 5. [Variational system] Only if you take the class as 5103!

Consider the autonomous nonlinear system

ẋ = −x , ẏ = x2 + y . (7)

(a) Solve the initial value problem (7) with arbitrary initial conditions, (x(0), y(0)) =
(x0, y0).

Hint: Although the system (7) is nonlinear, it can be solved easily – first find x(t), and
then plug this function in the second equation and solve it for y(t). You should obtain

that x(t) = x0 e−t, y(t) =
(
y0 +

x20
3

)
et − x20

3
e−2t.

(b) Let Φt(x0) be the flow of the of the autonomous nonlinear system ẋ = f(x) on Rn with
initial condition x(0) = x0 (in other words, Φt(x0) satisfies d

dt
Φt(x0) = f(Φt(x0)) and

Φ0(x0) = x0).

Suppose that we know the solution Φt(x0) and want to find, at least approximately,
the behavior of small perturbations of this solution. To this end, we can study the
behavior of Φt(x0 + u0) for very small u0 ∈ Rn. We do not want to solve the nonlinear
system (7) again, so instead we define the vector-valued functions

u(t) := Φt(x0 + u0)−Φt(x0)

that give us the time evolution of the small perturbations to the original solution.
Clearly, u(t) must satisfy

u̇(t) =
d

dt
[Φt(x0 + u0)−Φt(x0)]

= f (Φt(x0 + u0))− f (Φt(x0))

= Df (Φt(x0)) [Φt(x0 + u0)−Φt(x0)] +O
(
|Φt(x0 + u0)−Φt(x0)|2

)
= Df (Φt(x0)) u(t) + o

(
|u(t)|2

)
and

u(0) = Φ0(x0 + u0)−Φ0(x0) = (x0 + u0)− x0 = u0 .

This motivates the definition of the variational equation for ẋ = f(x) around the
solution Φt(x0) of ẋ = f(x) as

u̇(t) = Df (Φt(x0)) u(t) (8)

or, in components,

u̇i(t) =
n∑
j=1

∂fi
∂xj

(
Φt(x0)

)
uj(t) .
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The initial condition for u(t) is u(0) = u0 (where u0 is arbitrary).

The advantage of solving (8) instead of the original system (7) is that (8) is linear
(although, generally, nonautonomous).

Write down the variational equation of the system (7) around the solution found in
part (a).

(c) Solve the variational equation that you wrote in part (b) for the particular choice
x0 = 0, with arbitrary initial condition u0.

Hint: You should obtain that

u(t) = u0 e−t , v(t) = −2

3
x0u0 e−2t +

(
v0 +

2

3
x0u0

)
et .

(d) How does the solution u(t) found in part (c) behave as t → ∞? Are there initial
conditions u0 6= 0 for which u(t) stays bounded as t→∞?
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