
MATH 5763 Homework 4 Due Fri, 2/25/11

Problem 1. In Problem 2 of Homework 3 you constructed the transition probability matrix
P related to the number of newspapers in the newspaper pile at Brandon’s house. The space
state of this Markov chain consists of five states, {0, 1, 2, 3, 4}, and the transition probability
matrix is

P =


1
3

2
3

0 0 0
1
3

0 2
3

0 0
1
3

0 0 2
3

0
1
3

0 0 0 2
3

1 0 0 0 0

 .

(a) Is the Markov chain described by P ergodic? Explain briefly your reasoning.

(b) Is the Markov chain described by P irreducible? Explain briefly.

(c) Find the stationary distribution π of the Markov chain. Please write your calculations
legibly.

(d) If Y is a discrete random variable taking values in the set {0, 1, 2, 3, 4} with probabilities
P(Y = i) = πi (where πi is the ith component of the stationary distribution π found
in part (c)), find E[Y ], E[Y 2], VarY , and the standard deviation σY .

Remark: If the computation of E[Y 2] gets too tedious, just write how you will do it,
without finishing the calculations.

(e) On average, on how many days of the year (at 6:01 p.m.) are there no newspapers on
the pile? Explain how you obtained your result.

Problem 2. In Problem 3 of Homework 3 you considered a Markov chain with five states,
and after relabeling the states the transition matrix of the Markov chain became

P =

 C1 0 0
0 C2 0
∗ ∗ T

 =


1
3

2
3

1 0

0

0

0 0

0 0
0 0 1 0 0

0 0
1
6

1
3

1
4

0

1
4

1
2

1
2

0

 ;

here 0 denotes a matrix of appropriate size with zero entries, while a star denotes an arbitrary
matrix of appropriate size. You proved that C1 and C2 are stochastic matrices, while T is
not.
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(a) Consider the closed and irreducible set C1 comprising the recurrent states 1 and 2.

Directly from the transition probabilities find the probabilities ρ
(n)
ij of visiting state

j for the first time in exactly n steps starting from state i for all possible i and j
in C1 (draw a simple diagram with these two states and think about the number of
ways the first returns/visits can occur). Use the values you obtained to compute the
probabilities fij of eventually visiting state j starting from state i for all i and j in C1.
Are you surprised by the results for fij? Explain why (or why not).

Remark: Here are some values that you can use without deriving:

ρ
(n)
12 =

2

3n
for all n ∈ N ; ρ

(1)
21 = 1 , ρ

(m)
21 = 0 for m = 2, 3, 4, . . .

(b) Find ρ
(n)
33 and f33 for the only state in the set C2. Answer the same questions as in

part (a).

(c) Compute the values ρ
(n)
54 and ρ

(n)
55 , as well as f54 and f55. Discuss your finding in the

light of the general theory.

(d) Find the most general form of a stationary distribution π (satisfying πP = π and the
normalization condition). You will very easily see from the linear system that π4 = 0
and π5 = 0 (but you have to see this from the system!). How do you explain this fact?

(e) Finish the calculation of π started in part (d). How many stationary distributions does
this Markov chain have (judging from concrete form of π you just obtained)? Discuss
this in the light of the ergodic theorem.

(f) Can you suggest a method for computing all stationary distributions of the Markov
chain in this problem without ever solving a system of five equations? Explain briefly
how you are going to do it, and why your method will work.

Problem 3. This is a continuation of the previous problem. The form in which we wrote
the transition probabilities P (after relabeling the states) is very convenient for studying the
long-term behavior of the Markov chain because of the following fact (easy to check):

Pn =

 C1 0 0
0 C2 0
∗ ∗ T

n

=

 Cn
1 0 0
0 Cn

2 0
∗ ∗ Tn


(a) Consider only the irreducible matrix C1 containing only the recurrent states 1 and 2.

Let µi be the average number of transitions needed by the process, starting from state
i, to return to i for the first time (sometimes µi is called the mean recurrence time

of state i). In part (a) of the previous problem you found the probabilities ρ
(n)
ii of

returning to state i from the initial state i for the first time in exactly n steps (for

2



i ∈ {1, 2}). Use your results to compute µ1 and µ2. Are the states 1 and 2 positive
recurrent or null recurrent? DId you expect what you just observed? Explain briefly.

Hint: The following trick is very useful for evaluating sums: differentiating with respect
to q both sides of the formula for the sum of a geometric series,

∞∑
n=0

qn =
1

1− q
, |q| < 1 ,

one obtains
∞∑
n=1

nqn−1 =
1

(1− q)2
, |q| < 1

(in the sum in the left-hand side one can start the summation from 0, but the term
with n = 0 is equal to zero). (Incidentally, differentiating one more time, one can
obtain an expression for

∑∞
n=2 n(n− 1)qn, from which

∑∞
n=2 n

2qn can be found, etc.)

(b) Consider only the matrix C1 containing the recurrent states 1 and 2. Since these two
states form an irreducible set, the Ergodic Theorem guarantees that it has a unique
stationary distribution π̃ = (π̃1 π̃2). Find π̃.

(c) Your results in parts (a) and (b) are related. How?

(d) In the rest of this problem you will consider the transient states 4 and 5. Recall that
IA : S → {0, 1} is the indicator function of the event A:

IA(s) =

{
1 if s ∈ A ,
0 if s /∈ A .

Let j be a transient state,

Yj :=
∞∑
n=0

I{Xn=j}

be the number of times the chain visits it, and

E[Yj |X0 = k] = E

[
∞∑
n=0

I{Xn=j}

∣∣∣∣∣ X0 = k

]

be the expected number of times the chain visits the transient state j if initially it is
in the transient state k. Show that

E[Yj |X0 = k] =
∞∑
n=0

p
(n)
kj =

(
∞∑
n=0

P(n)

)
kj

=

(
∞∑
n=0

Pn

)
kj

=
(
(I−T)−1

)
kj
,

where I is the unit matrix of appropriate size.
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Hint: Use the fact that, for a matrix A, if the “geometric series”
∑∞

n=0A
n converges,

its sum is equal to
∞∑
n=0

An = (I−A)−1 .

Note that for numbers (i.e., 1× 1 matrices) this becomes the well-known formula.

Remark: If T corresponds to the transient states only, there is a theorem that guaran-
tees that the matrix (I−T) is invertible.

(g) I did the math, and obtained

T =

(
1
4

1
2

1
2

0

)
, I−T =

(
3
4
−1

2

−1
2

1

)
, (I−T)−1 =

(
2 1

1 3
2

)
.

Discuss the meaning of each entry of (I − T)−1 in the light of what you proved in
part (f).

Problem 4. A random walk can be represented as a connected graph between coordinates
(n, y), where the ordinate y is the position of the walk, and the abscissa n represents the
number of steps. A walk of 7 steps which joins (0, 1) and (7, 2) is shown in the figure below.
Suppose that a random walk starts at (0, y1) and finishes at (n, y2), where y1 > 0, y2 > 0,

and n + y2 − y1 is an even number. Suppose also that the walk first visits the origin (i.e.,
position y = 0) at time n = n1. Reflect that part of the path for which n ≤ n1 in the n-axis
(see the figure), and use a reflection argument to show that the number of paths from (0, y1)
to (n, y2) which touch or cross the n-axis is equal to the number of all pats from (0,−y1) to
(n, y2). This is known as the reflection principle.
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