Problem 1. [Test functions]

Let $\phi \in \mathscr{D}(\mathbb{R})$. Consider the following sequences of functions:

(a)
$$\psi_k(x) \coloneqq \frac{1}{k} \phi(x)$$
; (b) $\rho_k(x) \coloneqq \frac{1}{k} \phi(kx)$; (c) $\sigma_k(x) \coloneqq \frac{1}{k} \phi\left(\frac{x}{k}\right)$

For each sequence explain if it converges in $\mathscr{D}(\mathbb{R})$ as $k \to \infty$ – if it does, to what limiting function; if it does not, why.

Hint: Only ψ_k converges.

Problem 2. [Convolution with a mollifier]

Recall that the function $\eta: \mathbb{R}^n \to \mathbb{R}$ was defined in class as

$$\eta(\mathbf{x}) \coloneqq \begin{cases} C \exp\left(\frac{1}{|\mathbf{x}|^2 - 1}\right), & |\mathbf{x}| < 1, \\ 0, & |\mathbf{x}| \ge 1, \end{cases}$$
(1)

where the constant C is such that $\|\eta\|_{L^1(\mathbb{R}^n)} = 1$. For any $\varepsilon > 0$, define $\eta_{\varepsilon} : \mathbb{R}^n \to \mathbb{R}$ by

$$\eta_{\varepsilon}(\mathbf{x}) \coloneqq \frac{1}{\varepsilon^n} \eta\left(\frac{\mathbf{x}}{\varepsilon}\right) .$$
(2)

It is easy to show that $\eta_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^n)$, $\operatorname{supp} \eta_{\varepsilon} = \overline{B(\mathbf{0},\varepsilon)}, \ \eta_{\varepsilon} \ge 0, \ \|\eta_{\varepsilon}\|_{L^1(\mathbb{R}^n)} = 1.$

Let $A \subset \mathbb{R}^n$ be a bounded open subset of \mathbb{R}^n (the openness of A is not essential), and let $f := \chi_A : \mathbb{R}^n \to \mathbb{R}$ be the indicator function of the set A, i.e.,

$$f(\mathbf{x}) \coloneqq \begin{cases} 1 , & \mathbf{x} \in A , \\ 0 , & \mathbf{x} \notin A . \end{cases}$$

Define $f_{\varepsilon} \coloneqq f * \eta_{\varepsilon} \colon \mathbb{R}^n \to \mathbb{R}$ as the convolution of f and η_{ε} :

$$f_{\varepsilon}(\mathbf{x}) \coloneqq (f * \eta_{\varepsilon})(\mathbf{x}) \coloneqq \int_{\mathbb{R}^n} f(\mathbf{y}) \eta_{\varepsilon}(\mathbf{x} - \mathbf{y}) \,\mathrm{d}\mathbf{y} \;.$$

- (a) Show that if $\mathbf{x} \in \mathbb{R}^n$ is such that $B(\mathbf{x}, \varepsilon) \subset A$, then $f_{\varepsilon}(\mathbf{x}) = 1$.
- (b) What is the value of $f_{\varepsilon}(\mathbf{x})$ if $\mathbf{x} \in \mathbb{R}^n$ is such that $B(\mathbf{x}, \varepsilon) \cap A = \emptyset$? Justify your claim.
- (c) How differentiable is f_{ε} ? (Recall what you know about differentiation of a convolution; there is no need of a detailed proof.)
- (d) Does f_{ε} belong to $\mathscr{D}(\mathbb{R}^n)$? Explain briefly.

Problem 3. [The space of distributions $\mathscr{D}'(\mathbb{R})$]

Show that $u(x) := e^x \in \mathscr{D}'(\mathbb{R})$, in the sense that it defines a continuous linear functional on $\mathscr{D}(\mathbb{R})$ by

$$\langle u, \phi \rangle \coloneqq \int e^x \phi(x) dx , \qquad \phi \in \mathscr{D}(\mathbb{R})$$

Problem 4. [Convergence in $\mathscr{D}'(\mathbb{R})$]

Prove that $\delta_k \to 0$ in $\mathscr{D}'(\mathbb{R})$ as $k \to \infty$.

Problem 5. [Delta-like sequences in $\mathscr{D}'(\mathbb{R})$]

The Weighted Mean Value Theorem for Integrals states that if the function $f : [a, b] \to \mathbb{R}$ is continuous on the interval [a, b] and the function $g : [a, b] \to \mathbb{R}$ is integrable and does not change sign on [a, b], then there exists a number $c \in (a, b)$ such that

$$\int_a^b f(x) g(x) \, \mathrm{d}x = f(c) \int_a^b g(x) \, \mathrm{d}x \, .$$

Use this theorem to prove that $\eta_{\varepsilon} \to \delta$ in $\mathscr{D}'(\mathbb{R})$ as $\varepsilon \to 0^+$, where $\eta_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ is defined as in (1) and (2) (but for n = 1).

Remark 1: Instead of using the above theorem, one can use the continuity of the test function $\phi \in \mathscr{D}(\mathbb{R})$. Namely, the continuity of ϕ implies that for any $\mu > 0$ there exists a number $\varepsilon_0 > 0$ such that $|\phi(x) - \phi(0)| < \mu$ for any $x \in (-\varepsilon_0, \varepsilon_0)$. Using the properties of η_{ε} , we obtain that for all $\varepsilon \leq \varepsilon_0$

$$\left|\langle \eta_{\varepsilon}, \phi \rangle - \phi(0)\right| = \left|\int \eta_{\varepsilon}(x) \,\phi(x) \,\mathrm{d}x - \phi(0)\right| \le \int \eta_{\varepsilon}(x) \,\left|\phi(x) - \phi(0)\right| \,\mathrm{d}x < \mu \int \eta_{\varepsilon}(x) \,\mathrm{d}x = \mu ,$$

which implies that $\langle \eta_{\varepsilon}, \phi \rangle \to \phi(0) = \langle \delta, \phi \rangle$ for any $\phi \in \mathscr{D}(\mathbb{R})$ as $\varepsilon \to 0^+$, i.e., that $\eta_{\varepsilon} \to \delta$ in $\mathscr{D}(\mathbb{R})$ as $\varepsilon \to 0^+$.

Remark 2: One can also prove that the functions $\frac{1}{2\varepsilon}\chi_{[-\varepsilon,\varepsilon]}(x), \ \frac{\varepsilon}{\pi(x^2+\varepsilon^2)}, \ \frac{1}{2\sqrt{\pi\varepsilon}}e^{-x^2/(4\varepsilon)}, \ \frac{1}{\pi x}\sin\frac{x}{\varepsilon}, \ \frac{1}{\pi x^2}\sin^2\frac{x}{\varepsilon} \text{ converge to } \delta \text{ in } \mathscr{D}'(\mathbb{R}) \text{ as } \varepsilon \to 0^+.$

Problem 6. ["Naive" definition of δ_a']

Recall that the *k*th derivative, $\delta_a^{(k)}(x) \coloneqq \frac{\mathrm{d}^k}{\mathrm{d}x^k} \delta_a(x)$, of $\delta_a(x)$ is defined by the formula $\langle \delta_a^{(k)}, \phi \rangle \coloneqq (-1)^k \phi^{(k)}(a)$ for any $\phi \in \mathscr{D}(\mathbb{R})$, which can be written formally as

$$\int \delta_a^{(n)}(x) \,\phi(x) \,\mathrm{d}x \coloneqq (-1)^n \,\phi^{(n)}(a) \,\,. \tag{3}$$

The motivation for this definition came from treating the derivatives of $\delta_a(x)$ as ordinary functions, integrating by parts, and using that at $\pm \infty$ the test function ϕ is equal to zero.

In this problem you will give a meaning of the formal definition of a derivative of $\delta_a(x)$ that looks like the derivative of an "ordinary" function:

$$\frac{\widetilde{\mathrm{d}}}{\mathrm{d}x}\delta_a(x) \quad ":=" \lim_{h\to 0} \frac{\delta_a(x+h) - \delta_a(x)}{h} ; \qquad (4)$$

here the tilde over the derivative sign simply means that this definition is different from the definition (3) of the derivative of $\delta_a(t)$. Inspired by (4), define

$$\left(\frac{\widetilde{\mathrm{d}}}{\mathrm{d}x}\delta_a(x),\phi\right) \equiv \int \left(\frac{\widetilde{\mathrm{d}}}{\mathrm{d}x}\delta_a(x)\right)\phi(x)\,\mathrm{d}x \coloneqq \lim_{h\to 0}\int \frac{\delta_a(x+h)-\delta_a(x)}{h}\phi(x)\,\mathrm{d}x \;. \tag{5}$$

- (a) Change the variable x in $\int \delta_a(x+h) \phi(x) dx$ to z = x + h to compute this integral.
- (b) Using your result from part (a), find $\int \frac{\delta_a(x+h) \delta_a(x)}{h} \phi(x) dx$.
- (c) Find $\int \left(\frac{\widetilde{d}}{dx}\delta_a(x)\right)\phi(x) dx$ defined by (5), and compare your result with the definition of δ'_a given by equation (3). Discuss briefly your findings.

Problem 7. [A product of a $C^{\infty}(\mathbb{R})$ function with δ , δ' , and δ''] In all parts of this problem assume that $f \in C^{\infty}(\mathbb{R})$.

(a) Show that the product $f \delta$ defined for an arbitrary test function ϕ as

$$\langle f \, \delta, \phi \rangle \coloneqq \int f(x) \, \delta(x) \, \phi(x) \, \mathrm{d}x$$

is a distribution in $\mathscr{D}'(\mathbb{R})$ and

$$f(x)\,\delta(x)=f(0)\,\delta(x)\;.$$

Hint: Show that $\langle f \delta, \phi \rangle = f(0) \phi(0)$ for any test function ϕ .

(b) Prove the equality

$$f(x)\delta'(x) = -f'(0)\delta(x) + f(0)\delta'(x)$$

(c) Find an expression for $f(x) \delta''(x)$ like in part (b) (i.e., an expression does not involve the function f(x) and its derivatives but only the value of f and its derivatives at 0).

Problem 8. [Derivative of a function with a "corner"]

Consider the function

$$l(x) \coloneqq \begin{cases} 0, & x < 0, \\ x, & x \ge 0 \end{cases}$$

as an element of $\mathscr{D}'(\mathbb{R})$ and show that it is differentiable and l' is the Heaviside function H. *Hint:* Imitate the proof that $H' = \delta$ that was given in class.