Problem 1. Consider the sequence of functions defined by

$$f_n(x) = \frac{x^n}{n}$$

- (a) Show that (f_n) converges uniformly on [0,1] and find $f = \lim f_n$. Show that f is differentiable and compute f'(x) for all $x \in [0,1]$.
- (b) Show that (f'_n) converges on [0, 1]. Is the convergence uniform? Set $g = \lim f'_n$ and compare g and f'. Are they the same?

Problem 2. Consider the sequence of functions

$$f_n(x) = \frac{nx + x^2}{2n} \; ,$$

and set $f(x) = \lim f_n(x)$. Show that f is differentiable in two ways.

- (a) Directly: Compute f(x) by taking the limit $n \to \infty$ algebraically, and then find f'(x).
- (b) Using theoretical results: Compute f'(x) for each $n \in \mathbb{N}$ and show that the sequence of derivatives (f'_n) converges uniformly on every interval [-B, B]. Use some theoretical result (specify which one) to conclude that $f'(x) = \lim f'_n(x)$.

Problem 3. The result proved in Problem 6 of Homework 3 is called *Dini's Theorem*. In this problem you will check that all hypotheses in Dini's Theorem are necessary.

(a) Consider the sequence of functions (f_n) defined by

$$f_n(x) = \frac{1}{1+nx}$$
, $x \in (0,1)$.

Are they all continuous? Is it true that $f_{n+1}(x) \leq f_n(x)$ foe each $x \in (0, 1)$? Does (f_n) converge uniformly? Which condition in Dini's Theorem is violated for (f_n) ?

(b) Define the sequence of functions (g_n) on [0, 1] by

$$g_n(x) = \begin{cases} n^2 x & \text{for } x \in [0, \frac{1}{n}] ,\\ 2n - n^2 x & \text{for } x \in [\frac{1}{n}, \frac{2}{n}] ,\\ 0 & \text{for } x \in [\frac{2}{n}, 1] . \end{cases}$$

Sketch the graph of g_n . Explain why $g_n \to 0$ pointwise on [0, 1]. Is the sequence $g_n(x)$ monotone for any $x \in [0, 1]$? Is the sequence (g_n) uniformly convergent?

(c) Consider the sequence (h_n) on [0, 1] defined by

$$h_n(x) = \begin{cases} 0 & \text{for } x = 0 , \\ 1 & \text{for } x \in (0, \frac{1}{n}) , \\ 0 & \text{for } x \in [\frac{1}{n}, 1] . \end{cases}$$

Does (h_n) converge uniformly? Explain briefly. Which assumption of Dini's Theorem is not satisfied?

(d) Consider our old friend, the sequence $r_n(x) = x^n$, $x \in [0, 1]$. Discuss why we cannot apply Dini's Theorem to (r_n) .

Problem 4.

(a) Use the Weierstrass M-test to prove that the function

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2} = x + \frac{x^2}{4} + \frac{x^3}{9} + \frac{x^4}{16} + \cdots$$

is continuous on [-1, 1].

(b) The series

$$g(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$$

converges for every $x \in [-1,1)$ but does not converge when x = 1. For a fixed $x_0 \in (-1,1)$, explain how we can still use the Weierstrass M-test to prove that g is continuous at x_0 .

Problem 5. Let

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$$

- (a) Show that f is a continuous function on all of \mathbb{R} .
- (b) Use the Term-by-term Differentiability Theorem to show that f is differentiable on any interval [-B, B] for B > 0.
- (c) Prove that f' is continuous on any interval [-B, B] for B > 0.
- (d) Do your results from parts (b) and (c) allow you to conclude that f' exists and is continuous on all of \mathbb{R} ? Justify your answer.

Problem 6. Let $\sum a_n x^n$ be a power series with $a_n \neq 0$, and assume that

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

exists.

(a) Show that if $L \neq 0$, then the series converges for all $x \in \left(-\frac{1}{L}, \frac{1}{L}\right)$.

Hint: Recall the proof of the Ratio Test for sequences of numbers.

- (b) Show that if L = 0, then the series converges for all $x \in \mathbb{R}$.
- (c) Show that (a) and (b) continue to hold if L is replaced by the limit

$$L' = \lim_{n \to \infty} s_n$$
, where $s_n = \sup \left\{ \left| \frac{a_{k+1}}{a_k} \right| : k \ge n \right\}$.

Recalling the definition of limit superior from Problem 5 of Homework 1, we see that $L' = \limsup \left| \frac{a_{k+1}}{a_k} \right|.$

Remark: Using the Root Test instead of the Ratio Test, one can easily derive the following formula for the radius of convergence of the power series $\sum a_n x^n$:

$$R = \left(\limsup \sqrt[n]{|a_n|}\right)^{-1}$$

Food for Thought: Abbott, Exercises 6.3.4, 6.4.1, 6.4.7(a,b), 6.5.2.

Hint for Abbott, Exercise 6.5.2: Think about the power series $\sum_{n=0}^{\infty} n! x^n$, $\sum_{n=0}^{\infty} x^n$, $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$, $\sum_{n=0}^{\infty} x^n - \sum_{n=1}^{\infty} x^n - \sum_{$

$$\sum_{n=1}^{\infty} \frac{x^n}{n}, \sum_{n=1}^{\infty} \frac{x^n}{n^2}, \sum_{n=1}^{\infty} \frac{x^n}{n!}.$$