Problem 1. Consider the sequence of functions defined by

$$
f_{n}(x)=\frac{x^{n}}{n}
$$

(a) Show that $\left(f_{n}\right)$ converges uniformly on $[0,1]$ and find $f=\lim f_{n}$. Show that f is differentiable and compute $f^{\prime}(x)$ for all $x \in[0,1]$.
(b) Show that $\left(f_{n}^{\prime}\right)$ converges on $[0,1]$. Is the convergence uniform? Set $g=\lim f_{n}^{\prime}$ and compare g and f^{\prime}. Are they the same?

Problem 2. Consider the sequence of functions

$$
f_{n}(x)=\frac{n x+x^{2}}{2 n}
$$

and set $f(x)=\lim f_{n}(x)$. Show that f is differentiable in two ways.
(a) Directly: Compute $f(x)$ by taking the limit $n \rightarrow \infty$ algebraically, and then find $f^{\prime}(x)$.
(b) Using theoretical results: Compute $f^{\prime}(x)$ for each $n \in \mathbb{N}$ and show that the sequence of derivatives $\left(f_{n}^{\prime}\right)$ converges uniformly on every interval $[-B, B]$. Use some theoretical result (specify which one) to conclude that $f^{\prime}(x)=\lim f_{n}^{\prime}(x)$.

Problem 3. The result proved in Problem 6 of Homework 3 is called Dini's Theorem. In this problem you will check that all hypotheses in Dini's Theorem are necessary.
(a) Consider the sequence of functions $\left(f_{n}\right)$ defined by

$$
f_{n}(x)=\frac{1}{1+n x}, \quad x \in(0,1)
$$

Are they all continuous? Is it true that $f_{n+1}(x) \leq f_{n}(x)$ foe each $x \in(0,1)$? Does $\left(f_{n}\right)$ converge uniformly? Which condition in Dini's Theorem is violated for $\left(f_{n}\right)$?
(b) Define the sequence of functions $\left(g_{n}\right)$ on $[0,1]$ by

$$
g_{n}(x)= \begin{cases}n^{2} x & \text { for } x \in\left[0, \frac{1}{n}\right] \\ 2 n-n^{2} x & \text { for } x \in\left[\frac{1}{n}, \frac{2}{n}\right] \\ 0 & \text { for } x \in\left[\frac{2}{n}, 1\right]\end{cases}
$$

Sketch the graph of g_{n}. Explain why $g_{n} \rightarrow 0$ pointwise on $[0,1]$. Is the sequence $g_{n}(x)$ monotone for any $x \in[0,1]$? Is the sequence $\left(g_{n}\right)$ uniformly convergent?
(c) Consider the sequence $\left(h_{n}\right)$ on $[0,1]$ defined by

$$
h_{n}(x)= \begin{cases}0 & \text { for } x=0 \\ 1 & \text { for } x \in\left(0, \frac{1}{n}\right) \\ 0 & \text { for } x \in\left[\frac{1}{n}, 1\right]\end{cases}
$$

Does $\left(h_{n}\right)$ converge uniformly? Explain briefly. Which assumption of Dini's Theorem is not satisfied?
(d) Consider our old friend, the sequence $r_{n}(x)=x^{n}, x \in[0,1]$. Discuss why we cannot apply Dini's Theorem to $\left(r_{n}\right)$.

Problem 4.

(a) Use the Weierstrass M-test to prove that the funciton

$$
f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}=x+\frac{x^{2}}{4}+\frac{x^{3}}{9}+\frac{x^{4}}{16}+\cdots
$$

is continuous on $[-1,1]$.
(b) The series

$$
g(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots
$$

converges for every $x \in[-1,1)$ but does not converge when $x=1$. For a fixed $x_{0} \in(-1,1)$, explain how we can still use the Weierstrass M-test to prove that g is continuous at x_{0}.

Problem 5. Let

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{x^{2}+n^{2}}
$$

(a) Show that f is a continuous function on all of \mathbb{R}.
(b) Use the Term-by-term Differentiability Theorem to show that f is differentiable on any interval $[-B, B]$ for $B>0$.
(c) Prove that f^{\prime} is continuous on any interval $[-B, B]$ for $B>0$.
(d) Do your results from parts (b) and (c) allow you to conclude that f^{\prime} exists and is continuous on all of \mathbb{R} ? Justify your answer.

Problem 6. Let $\sum a_{n} x^{n}$ be a power series with $a_{n} \neq 0$, and assume that

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

exists.
(a) Show that if $L \neq 0$, then the series converges for all $x \in\left(-\frac{1}{L}, \frac{1}{L}\right)$.

Hint: Recall the proof of the Ratio Test for sequences of numbers.
(b) Show that if $L=0$, then the series converges for all $x \in \mathbb{R}$.
(c) Show that (a) and (b) continue to hold if L is replaced by the limit

$$
L^{\prime}=\lim _{n \rightarrow \infty} s_{n}, \quad \text { where } \quad s_{n}=\sup \left\{\left|\frac{a_{k+1}}{a_{k}}\right|: k \geq n\right\}
$$

Recalling the definition of limit superior from Problem 5 of Homework 1, we see that $L^{\prime}=\lim \sup \left|\frac{a_{k+1}}{a_{k}}\right|$.
Remark: Using the Root Test instead of the Ratio Test, one can easily derive the following formula for the radius of convergence of the power series $\sum a_{n} x^{n}$:

$$
R=\left(\limsup \sqrt[n]{\left|a_{n}\right|}\right)^{-1}
$$

Food for Thought: Abbott, Exercises 6.3.4, 6.4.1, 6.4.7(a,b), 6.5.2.
Hint for Abbott, Exercise 6.5.2: Think about the power series $\sum_{n=0}^{\infty} n!x^{n}, \sum_{n=0}^{\infty} x^{n}, \sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$, $\sum_{n=1}^{\infty} \frac{x^{n}}{n}, \sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}, \sum_{n=1}^{\infty} \frac{x^{n}}{n!}$.

