
MATH 4093/5093 Homework 4 Due Fri, 2/25/2011

Problem 1. Directly from the definition, find the rates of convergence α and the asymptotic
error constants λ for each of the sequences (all of which tend to 0)

(a) pn =
1

n2
; (b) pn = 7−n ; (c) pn = 10−5

n

.

Problem 2. The concept of rate of convergence (in particular, the order of convergence
α and the asymptotic error constant λ) are very important when one is using an iterative
method, i.e., a method in which the exact solution of the problem is found as a limit of
a sequence of approximate values. If the exact value p is a limit of a sequence {pn}∞n=0 of
approximate values, then the error at the nth step of the iteration is En := |pn−p|. The rate
of decreasing of the error is one of the most important characteristics of iterative methods
of numerical computations.

Assume that the sequence {pn}∞n=0 is generated by some iterative method for finding a root
of an equation. Also assume that we know that the sequence {pn}∞n=0 converges to some
number p of some order α with some asymptotic error constant λ, but we don’t know the
values of α and λ. The goal of this problem is to develop a method for determining the
numerical value of α from the numerical values of the members of the sequence {pn}∞n=0.

Let En := |pn − p| be the error at the nth step of the iteration, and define `n := log10En.

(a) Show that for large n, the following approximate identity holds:

`n − α`n−1 ≈ log10 λ .

Hint: Just look at the definition of order of convergence.

(b) Using the approximate identity derived in (a) show that

α ≈ `n − `n+1

`n−1 − `n
.

Note that this approximate formula for α does not depend on the base of the logarithms;
if `n is defined as the log base 10 of En, the formula will remain the same.

(c) The data in the table below come from applying the so-called Newton method and the
secant method to find the root of the equation

x+ sinx = 1 ,

whose exact value is p = 0.51097342938856910952001397114508063204535889262 . . ..
Use the formula derived in part (b) to find empirically the order of convergence α for
these two methods.
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Table 1: Log10 of the errors of the Newton and the secant methods.

n `n, Newton `n, secant
0 −0.31067 −0.31067
1 −2.85988 −1.49389
2 −7.84087 −2.54052
3 −17.7179 −4.90935
4 −37.4715 −8.33484
5 −76.9787 −14.1282
6 −155.993 −23.3471
7 −314.022 −38.3595
8 −630.079 −62.5907
9 −1262.19 −101.834
10 −2526.42 −165.309
11 −5054.88 −268.027
12 −10111.8 −434.220

Problem 3. As discussed in class, the polynomials of order no higher than n form a
linear space with respect to the addition of polynomials and multiplication of a polynomial
by a number as follows: if P and Q are polynomials of degree ≤ n and α ∈ R, then the
polynomials P +Q and αP are defined as follows:

(P +Q)(x) := P (x) +Q(x) , (αP )(x) := αP (x) .

Let Vn(a, b;w(x)) stand for the linear space of polynomials defined on the interval with left
end a and right end b (at each end, the interval can be open or closed; a and b can be finite
or infinite) of degree no greater than n endowed with the inner product

(P,Q) =

∫ b

a

P (x)Q(x)w(x) dx .

Dana defined a family of polynomials which she denoted (very modestly!) by D0, D1, D2, . . ..
These polynomials satisfy the following conditions:

(i) the polynomial Dk is of degree k;

(ii) the coefficient of xk in Dk is equal to 1 (such polynomials are called monic, following
the definition on page 377 of the book);

(iii) the polynomials D0, D1, D2, . . ., Dn form an orthogonal basis in the space of polyno-
mials Vn(0,∞;w(x) = e−x).
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In the solution of this problem the following identity will be handy:∫ ∞
0

xk e−x dx = k!

(where, by definition, 0! = 1).

(a) Clearly, D0(x) = 1 for each x ∈ [0,∞). Find the only monic polynomial D1 of degree 1
that is orthogonal to D0.

(b) Find the only monic quadratic polynomial D2 that is orthogonal to both D0 and D1.

(c) Show that the polynomial P (x) = x2 + 3 can be represented as a linear combination
of the polynomials D0, D1 and D2 as follows: P = D2 + 4D1 + 5D0.

(d) Show by direct integration that (D0, D0) = 1, (D1, D1) = 1, (D2, D2) = 4.

(e) Find the orthogonal projection, projD0+2D1
P , of the polynomial P (x) = x2 + 3 onto

the “ straight line”
` := {t(D0 + 2D1) | t ∈ R}

in the 3-dimensional inner product linear space V2(0,∞; e−x). If you have solved part
(c), then finding this orthogonal projection should be easy.

Hint: If u and v are vectors in the inner product linear space V , then the orthogonal
projection of the vector u onto the straight line in the direction of v is the vector

projvu =
(u,v)

(v,v)
v

– see the picture below.

projv u

u

v

(f) Finally, let D̃k := µkDk, where µk > 0 is a constant (depending on k) such that the
norm, ∥∥∥D̃k

∥∥∥ :=

√(
D̃k, D̃k

)
,

of the polynomial D̃k is 1. Find the explicit expressions for D̃0(x), D̃1(x), and D̃2(x).
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Problem 4. Hilbert matrices are a family of matrices that have very high condition
numbers. The Hilbert matrix H(n) of size n× n has matrix elements

h
(n)
ij =

1

i+ j − 1
.

The MATLAB command to generate a Hilbert matrix of size n is hilb(n). In this problem
you will use MATLAB to study the reliability of the residual and the relative residual as a
predictor of the error of an approximate solution of the linear system H(11)x = b.

(a) In MATLAB, let A denote the Hilbert matrix H(11), and xexact stand for the ex-
act solution xexact = ( 1 2 3 . . . 10 11 )T . Define the right-hand side b by typing
b = A*xexact , and then let xapprox be the solution of the linear system H(11)x = b
found by MATLAB (you can find xapprox by using the MATLAB command inv to
invert the matrix A, no need to write your own program).

(b) Find the error e = xapprox − xexact and the residual r = H(11)xapprox − b, and the
`∞-norms of b, xexact, e, and r, as well as the relative error and the relative residual.

(c) Use the MATLAB command norm to find ‖H(11)‖∞, ‖(H(11))−1‖∞, and κ∞(H(11)).

(d) Check that all inequalities proved in the Theorem on page 182 of the book hold in the
particular example in this problem. Please write a clear and detailed solution.
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