
MATH 4093/5093 Homework 3 Due Fri, 09/17/10

Problem 1. The so-called error function, erf x, is defined as the integral

erf(x) :=
2√
π

∫ x

0

e−t2 dt .

(a) What is the value of erf(0)?

(b) Find the derivatives erf ′(x), erf ′′(x), and erf ′′′(x).

(c) Write down the Taylor polynomial of degree 3, T3(x), of the function erf(x) about the
point x0 = 0.

(d) Use the Taylor polynomial obtained in (b) to find the approximate value of erf(0.2).
The exact value of erf(0.2) is 0.222702589210478 . . .; compute the numerical value of
the absolute error, |T3(0.2)− erf(0.2)|, and the relative error in approximating erf(0.2)
by T3(0.2).

Problem 2. The values of erf(x) can be obtained in different ways (all of them using
numerical methods). The Taylor expansion of erf(x) around 0 will not be very accurate for
relatively large values of the argument, say, for x = 1. The first method for computing erf(1)
is simply to compute the value of the integral numerically. There are many methods for
numerical computations of integrals, but, since we have not discussed them, here you will
find erf(1) by solving an IVP for an ODE. The Matlab codes for solving IVPs are available
at http://www.pcs.cnu.edu/~bbradie/mivps.html

(a) Write down a first-order ODE that erf(x) satisfies.

Hint: This question is equivalent to asking what the first derivative of erf(x) is.

(b) Think of an initial condition for erf(x). There is one value of x for which you know
erf(x) exactly.

(c) Compute the value of erf(1) by integrating the IVP formulated in parts (a) and (b)
using the Matlab code mod_euler.m (implementing the modified Euler method, which
is a Runge-Kutta method of order 2). Do this for stepsizes h = 1

10
, 1

100
, 1

1000
and 1

10000
.

Write down the value of the absolute error for each h. What does the dependence of
the absolute error on h seem to be? Does your empirical observation agree with what
you expected?

Remark: The function erf(x) exists in Matlab – to get the value of erf(1), simply type
erf(1).

1

(d) Do the same as in part (c), but using the Matlab code rk4.m (which implements
the classical Runge-Kutta method of order 4), and only for N = 10 and 100 (simply
because for N = 1000 the numerical error will be of order the “machine epsilon”; you
can find the machine epsilon in Matlab by typing eps and pressing enter). Again,
discuss your findings about the error in the light of the theoretical predictions.

Problem 3. Let f be a function of two variables defines as f(x, y) = cos x
y

.

(a) Expand the function f in a Taylor polynomial around the point (π
3
, 5) keeping only the

terms linear in the increments.

(b) Compute the approximate value of f(π
3
+0.03, 5.1) coming from the Taylor polynomial

of degree 1 obtained in part (a).

(c) Compute the exact value of f(π
3
+0.03, 5.1), as well as the actual values of the absolute

and the relative errors of the approximate value obtained in part (b).

Problem 4. In this problem you will study in detail the piecewise-linear interpolation of
the function f(x) = 1

x
on the interval [1, 2], and then on the interval [1, 4]. Piecewise-linear

interpolation of a function uses linear interpolation between each pair of consecutive values
of the argument. For example, to find the piecewise-linear interpolant of f(x) = 1

x
based on

its values at x = 1, 2, and 4, you have to compute the Lagrange interpolation polynomial
of degree 1 whose graph passes through the points (1, f(1)) and (2, f(2)), and the Lagrange
interpolation polynomial of degree 1 whose graph passes through (2, f(2)) and (4, f(4));
these two Lagrange polynomials together constitute the desired piecewise-linear interpolant
of the function f(x) = 1

x
. The graphs of the function f(x) = 1/x and its piecewise-linear

interpolant are shown in Figure 1.

(a) Find the first order Lagrange polynomial P1(x) of f(x) = 1
x

that passes through the
points (1, f(1)) and (2, f(2)).

(b) Let Etrue on [1,2] := max
x∈[1,2]

|f(x)− P1(x)| be the true error of the first order Lagrange

interpolation. Find the numerical value of Etrue on [1,2] “by paper and pencil”.

Hint: You first have to find the value x∗ of the argument that maximizes the expression
|f(x)−P1(x)|. Note that f is concave up, so that the graph of P1 lies above the graph
of f , therefore |f(x)− P1(x)| = P1(x)− f(x).

(c) Find the rigorous upper bound Erigorous on [1,2] of the error of the linear interpolation on
[1, 2] given by the Theorem 3.3 on page 348 of the book. Note that you do not know
the value of ξ in this bound, so you will have to take the maximum of the absolute
value of the derivative in this bound over the whole interval [1, 2]. Separately, you
will have to find the maximum value of the absolute value of the product of (x − xi)

2

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4

line 1
line 2
line 3

Figure 1: Piecewise-linear interpolation of f(x) = 1/x on the interval [1, 4] by using the
values of f(x) for x = 1, 2, and 4.

terms (look at the sign of each (x−xi) and get rid of the absolute values before taking
derivatives). In other words, you have to find

Erigorous on [1,2] =
1

(n + 1)!
max
ξ∈[a,b]

|fn+1(ξ)| max
x∈[a,b]

n∏
k=0

|x− xk| .

Find the exact value of this bound, and then compute its numerical value. Compare
with the exact value of the error found in part (b).

(d) Now find the Lagrange interpolating polynomial of f over the interval [2, 4], and write
your results from parts (a) and (c) together in the form

Ppiece−lin(x) =

{
b1x + c1 , x ∈ [1, 2] ,

b2x + c2 , x ∈ [2, 4] .

Remark: It is easy to check your results: the piecewise-linear interpolant must be a
linear function on [1, 2] and [2, 4] and must satisfy Ppiece−lin(1) = f(1), Ppiece−lin(2) =
f(2), Ppiece−lin(4) = f(4).

(e) Use your result from part (d) to compute Ppiecewise−linear(1.25), and compare its value
with f(1.25).

Problem 5. This problem is a continuation of the previous one.

(a) One can use interpolants in approximate computations. For example, we can use the
piecewise-linear interpolant of a function to obtain an approximate the integral of a
function over an interval. Use the piecewise-linear interpolant Ppiece−lin(x) found in

part (d) of the previous problem to approximate
∫ 4

1
f(x) dx by

∫ 4

1
Ppiece−lin(x) dx.

3

(b) In part (b) of the previous problem you found the rigorous upper bound Erigorous on [1,2]

on the error in interpolating f by a linear function on [1, 2]. I computed the rigorous
upper bound Erigorous on [2,4] on the error in interpolating f by a linear function on [2, 4],
and found that Erigorous on [2,4] = 1

8
. Use the values of Erigorous on [1,2] and Erigorous on [2,4]

to find a rigorous upper bound on the error
∣∣∣∫ 4

1
f(x) dx−

∫ 4

1
Ppiece−lin(x) dx

∣∣∣.
(c) Compute the true value of

∣∣∣∫ 4

1
f(x) dx−

∫ 4

1
Ppiece−lin(x) dx

∣∣∣ and compare it with the

rigorous upper bound found in part (b).

An exercise in Matlab (NOT to be turned in!). To make Figure 1, I used Bradie’s
code lagrange.m (available at http://www.pcs.cnu.edu/~bbradie/matlab.html under
Interpolation). If you know the values of the function f at the points x0, x1, . . ., xn,
you can find the coefficients of the Lagrange polynomial Pn(x) of order n that interpo-
lates f as follows. Save the values of xj as a vector xx, and the values of f(xj) as a
vector yy. Then type, say, lagr=lagrange(xx,yy) and you will obtain the values of
the coefficients of the Lagrange polynomial Pn(x) = anx

n + an−1x
n−1 + · · · + a1x + a0.

Suppose that you want to compute the Lagrange interpolating polynomial P2(x) of the
function f(x) = 1/x based on the values of f(x) for x = 1, 2 4. Type xx=[1 2 4] ,
yy=1.0 ./ xx , and lagr=lagrange(xx,yy) , and this will define the vector lagr whose
components are lagr(1) = 0.125, lagr(2) = −0.875, and lagr(3) = 1.75. This means
that P2(x) = 0.125x2 − 0.875x + 1.75. To obtain, say, the value P2(3.1), you can type
polyval(lagr,3.1) – see more about the Matlab command polyval in Section 11 of Ed
Overman’s Matlab Overview (available at the class web-site). I made Figure 1 by typing

x_dense = linspace(1.0, 4.0, 401);
y_dense = 1.0 ./ x_dense;
plot(x_dense,y_dense) % plotting y=1/x on [1,4]
hold on
xx = [1 2]
yy = 1.0 ./ xx
lagr = lagrange(xx, yy)
polyval(lagr, 1.0) % just a test
polyval(lagr, 2.0) % just a test
polyval(lagr, 1.5) % just a test
x_dense = linspace(1.0, 2.0, 101);
plot (x_dense, polyval(lagr, x_dense)) % plotting the Lagr poly on [1,2]
xx = [2 4]
yy = 1.0 ./ xx
lagr = lagrange(xx, yy)
x_dense = linspace(2.0, 4.0, 101);
plot (x_dense, polyval(lagr, x_dense)) % plotting the Lagr poly on [2,4]

In Matlab there are more sophisticated commands to deal with plots, like fplot, ezplot,
etc. (see Section 4.1 of Overman’s text), but instead of Matlab I used Octave, where these
commands are not available.

4

