Problem 1. Consider the sequence of functions

$$
f_{n}(x)=\frac{n x}{1+n x^{2}} .
$$

(a) Find the pointwise limit of the sequence $\left(f_{n}\right)$ for all $x \in[0, \infty)$.
(b) Is the convergence uniform on $(0,1)$? Justify your answer.
(c) Is the convergence uniform on $(1, \infty)$? Prove your claim.

Problem 2. For each $n \in \mathbb{N}$ and $x \in[0, \infty)$, let

$$
f_{n}(x)=\frac{x}{1+x^{n}} .
$$

(a) Find the pointwise limit of the sequence $\left(f_{n}\right)$ on $[0, \infty)$.
(b) Explain how we know that the convergence cannot be uniform on $[0, \infty)$.
(c) Choose a smaller set over which the convergence is uniform and prove that this is indeed the case.

Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly continuous on all of \mathbb{R}, and define a sequence of functions by

$$
f_{n}(x)=f\left(x+\frac{1}{n}\right) .
$$

(a) Show that $f_{n} \rightarrow f$ uniformly.
(b) Give an example to show that this proposition fails if f is only assumed to be continuous and not uniformly continuous on \mathbb{R}.

Problem 4. Assume that $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are uniformly convergent sequences of functions.
(a) Show that $\left(f_{n}+g_{n}\right)$ is a uniformly convergent sequence sequence of functions.
(b) Give an example to show that the product $\left(f_{n} g_{n}\right)$ may not converge uniformly.
(c) Prove that if there exists a constant M such that $\left|f_{n}\right| \leq M$ and $\left|g_{n}\right| \leq M$ for all $n \in \mathbb{N}$, then $\left(f_{n} g_{n}\right)$ converges uniformly.

Problem 5. We say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies a Hölder condition of order α for some $\alpha>0$ if there exists a constant $M>0$ such that

$$
\begin{equation*}
|f(x)-f(y)| \leq M|x-y|^{\alpha} \quad \text { for all } x \text { and } y \text { in } \mathbb{R} . \tag{1}
\end{equation*}
$$

(a) Prove that, if f satisfies Hölder condition of order $\alpha>0$, then f is continuous on \mathbb{R}.
(b) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on \mathbb{R} and g^{\prime} be bounded by some constant K (i.e., $\left|g^{\prime}(z)\right|<K$ for all $\left.z \in \mathbb{R}\right)$.
Let $x \in \mathbb{R}$ and $y \in \mathbb{R}$ be two arbitrary points, and assume (without loss of generality) that $x<y$. Apply the Mean Value Theorem to the function g on the interval $[x, y]$ to conclude that g satisfies Hölder condition of order $\alpha=1$. What can you say about the value of the constant M (in the right-hand side of (1)) for the function g in this case?
(c) Show that the function $h(x)=5|x|$ satisfies Hölder condition on \mathbb{R}. What are the values of the constants α and M (from the right-hand side of (1)) in this case?
(d) Show that, if f satisfies Hölder condition of order $\alpha>1$, then f is differentiable. What can you say about the derivative of f ?
Hint: Use the Hölder condition with $\alpha>1$ to find the limit $\lim _{x \rightarrow y}\left|\frac{f(x)-f(y)}{x-y}\right|$, and explain what your result means.

Problem 6. Assume that $f_{n} \rightarrow f$ pointwise on a compact set K and assume that for each $x \in K$ the sequence $f_{n}(x)$ is increasing. Follow the steps below to show that if f_{n} and f are continuous on K, then the convergence is uniform.
(a) Set $g_{n}=f-f_{n}$ and translate the preceding hypothesis into statements about the sequence $\left(g_{n}\right)$.
(b) Let $\varepsilon>0$ be arbitrary, and define the sets

$$
K_{n}:=\left\{x \in K: g_{n}(x) \geq \varepsilon\right\}
$$

Argue that each set K_{n} is bounded.
(c) Argue that each set K_{n} is closed (e.g., assume that $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a convergent sequence of numbers in K_{n} and show that $\left.x:=\lim _{k \rightarrow \infty} x_{k} \in K_{n}\right)$.
(d) Argue that $K_{1} \supseteq K_{1} \supseteq K_{2} \supseteq K_{3} \cdots$, and use this observation to finish the argument.

Food for Thought: Abbott, Exercises 4.4.1, 4.4.6, 4.4.8, 6.2.12, 6.3.1, 6.3.4.

