
MATH 3423 Homework 3 Due Mon, 9/16/13

Problem 1. The solution of the initial value problem for the wave equation

1

v2
∂2u

∂t2
=
∂2u

∂x2
, x ∈ R , t ≥ 0 ,

u(x, 0) = 0 ,

ut(x, 0) = h(x)

(where v is a positive constant) is given by a particular case of the so-called D’Alembert’s
formula,

u(x, t) =
1

2v

∫ x+vt

x−vt
h(z) dz (1)

(you do not need to prove this).

The following formula holds for differentiating an integral whose limits and integrand depend
on some parameter α:

d

dα

∫ ψ(α)

φ(α)

F (y, α) dy = F (ψ(α), α)ψ′(α)− F (φ(α), α)φ′(α) +

∫ ψ(α)

φ(α)

∂F

∂α
(y, α) dy (2)

(again, there is no need to prove this).

(a) Use the above formula for differentiating an integral depending on parameter to find
ut(x, t) and ux(x, t) (where u(x, t) is given by (1)).

(b) Use the above formula for differentiating an integral depending on parameter to find
utt(x, t) and uxx(x, t) and check that these derivatives satisfy the wave equation.

(c) Check that the expression for u(x, t) given by the D’Alembert’s formula satisfies the
initial conditions u(x, 0) = 0 and ut(x, 0) = h(x).

Problem 2. Recall the fact that

∫ ∞
−∞

e−y
2

dy =
√
π. By change of variables in the integral,

one can easily obtain that ∫ ∞
−∞

e−αy
2

dy =

√
π

α
. (3)

Below you will obtain some facts about integrals of the form

∫ ∞
−∞

yn e−y
2

dy, for some n ∈ N.

(a) Explain why

∫ ∞
−∞

y2n−1 e−y
2

dy = 0 for any n ∈ N.

Hint: The reason is very simple!
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(b) Use formula (2) from Problem 1 to differentiate both parts of equation (3) with respect

to the parameter α, and then set α = 1, to obtain an expression for

∫ ∞
−∞

y2 e−y
2

dy.

(c) Similarly to part (b), find

∫ ∞
−∞

y4 e−y
2

dy.

Problem 3. Find the four 4th roots of i.

Problem 4. Starting with

∫ ∞
0

e−β
2y2 dy =

√
π

2β
, let β =

1− i√
2

(and notice that β2 = −i)

to show that

∫ ∞
0

cos
(
x2
)

dx =

∫ ∞
0

sin
(
x2
)

dx =

√
π

8
.

Problem 5. Directly from the definition of sinh z, show that the Taylor expansion of sinh z

around 0 is sinh z =
∞∑
n=0

z2n+1

(2n+ 1)!
.

Problem 6. Determine ln (−i) and Ln (−i).

Problem 7.

(a) Show that arcsin z = −i ln
(

iz ±
√

1− z2
)

.

Hint: Solve sinw = z (i.e., eiw−e−iw

2i
= z) for z. You can set ξ := eiw, and rewrite

eiw−e−iw

2i
= z as a quadratic equation for ξ.

(b) Use your result from part (a) to solve the equation sinw = 2. Note that this equation
has no solution if w is real.

(c) Directly from the definition of the sine function, show that sin
(π

2
− i ln

(
2±
√

3
))

= 2.

Problem 8. Evaluate
√
−1
√
−1

(i.e., i i).

Problem 9. Show that lim
z→0

z∗

z
does not exist by taking the limit along the ray y = mx,

where m is a real constant.

Problem 10. Classify all singularities of f(z) =
z

(z2 + 4)2
.

Problem 11. Let u(x, y) = x3 − 3xy2. Use Cauchy-Riemann equations to find a function
v(x, y) such that the function f(z) = u(x, y) + i v(x, y) is differentiable (where z = x+ iy).
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