Problem 1. Proving the Alternating Series Test (Theorem 2.7.7) amounts to showing that the sequence of partial sums

$$
s_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots \pm a_{n}
$$

converges. Different characterizations of completeness lead to different proofs.
(a) Prove the Alternating Series Test by showing that $\left(s_{n}\right)$ is a Cauchy sequence.
(b) Prove the Alternating Series Test by using the Nested Interval Property (Theorem 1.4.1).
(c) Consider the subsequences ($s_{2 n}$) and $\left(s_{2 n+1}\right)$, and show how the Monotone Convergence Theorem (for sequences) leads to a third proof of the Alternating Series Test.

Problem 2. Give an example of each or explain why the request is impossible referencing the relevant theorems.
(a) Two series $\sum x_{n}$ and $\sum y_{n}$ that both diverge but where $\sum x_{n} y_{n}$ converges.
(b) A convergent series $\sum x_{n}$ and a bounded sequence (y_{n}) such that $\sum x_{n} y_{n}$ diverges.
(c) Two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ where $\sum x_{n}$ and $\sum\left(x_{n}+y_{n}\right)$ both converge, but $\sum y_{n}$ diverges.
(d) A sequence $\left(x_{n}\right)$ satisfying $0 \leq x_{n} \leq \frac{1}{n}$, where $\sum(-1)^{n} x_{n}$ diverges.

Problem 3. Using the Cauchy Condensation Test and the basic facts about geometric series, prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if and only if $p>1$.

Problem 4. Show that if $a_{n}>0$ and $\lim \left(n a_{n}\right)=L \neq 0$, then the series $\sum a_{n}$ diverges.
Problem 5. Given a series $\sum a_{n}$ with $a_{n} \neq 0$, the Ratio Test states that if $\left(a_{n}\right)$ satisfies

$$
\lim \left|\frac{a_{n+1}}{a_{n}}\right|=r<1,
$$

then the series converges absolutely.
(a) Let the number s satisfy $r<s<1$. Explain why there exists an N such that $n \geq N$ implies that $\left|a_{n+1}\right| \leq s\left|a_{n}\right|$.
(b) Why does $\left|a_{N}\right| \sum s^{n}$ converge?
(c) Show that $\sum\left|a_{n}\right|$ converges, and conclude that $\sum a_{n}$ converges.

Problem 6. Abel's Test for convergence states that if the series $\sum x_{k}$ converges, and if $\left(y_{k}\right)$ is a bounded sequence satisfying

$$
y_{1} \geq y_{2} \geq y_{3} \geq \cdots \geq 0
$$

then the series $\sum x_{k} y_{k}$ converges. Let s_{n} be the nth partial sum of the series $\sum x_{k}$.
(a) Use that $x_{1}=s_{1}$ and $x_{j}=s_{j}-s_{j-1}$ for $j \geq 2$ to show that

$$
\sum_{k=1}^{n} x_{k} y_{k}=s_{n} y_{n+1}+\sum_{k=1}^{n} s_{k}\left(y_{k}-y_{k+1}\right)
$$

(b) Use the Comparison Test to argue that $\sum s_{k}\left(y_{k}-y_{k+1}\right)$ converges absolutely, and show how this leads directly to a proof of Abel's Test.

Food for Thought Problem 1.

(a) Provide the details for the proof of the Comparison Test (Theorem 2.7.4) by using the Cauchy Criterion for Series.
(b) Give another proof of the Comparison Test, this time by using the Monotone Convergence Theorem.

Food for Thought Problem 2. Determine whether each series converges or diverges. Justify your answer.

1. $\sum_{n=1}^{\infty} \frac{n^{3}}{3^{n}}$
2. $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
3. $\sum_{n=1}^{\infty} \frac{n}{n^{2}+2}$
4. $\sum_{n=1}^{\infty} \frac{n!}{\left(2^{n}\right)^{3}}$
5. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
6. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$
7. $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n+1}}$
8. $\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})$
9. $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}$
10. $\sum_{n=1}^{\infty} n^{-1-1 / n}$
11. $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{2}}$
12. $\sum_{n=1}^{\infty} 2^{n} e^{-n}$
13. $\sum_{n=1}^{\infty} 3^{n} e^{-n}$
14. $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$

Food for Thought Problem 3. Determine whether each series converges absolutely, converges conditionally or diverges. Justify your answer.

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\ln n}$
2. $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{2}}$
3. $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n!}$
4. $\sum_{n=1}^{\infty} \frac{(-5)^{n}}{2^{n}}$
5. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n+1}$
6. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}+1}}$
7. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln n}{n}$
