
MATH 4193/5103 Homework 2 Due Tue, Feb 26, 2013

Problem 1. [A model of a fishery]

The equation

Ṅ = RN

(
1− N

K

)
−H N

A+N
(1)

provides a simple model of a fishery. Here N(t) ≥ 0 is the population of fish at time t,
R = const > 0 is the reproduction rate, K = const > 0 is the carrying capacity of the
system, H = const > 0 characterizes the intensity of fishing, and A = const > 0 is another
positive constant. In the absence of fishing, the population of fish evolves logistically, which

is reflected by the term RN

(
1− N

K

)
in the right-hand side of (1). The term −H N

A+N
in the right-hand side of (1) models the effects of fishing. The choice of this particular form
of the “fishing” term made because (i) it is simple, (ii) the model has a fixed point at N = 0
for all values of the parameters, as it should be, and (iii) it is reasonable to assume that the
rage at which fish are caught increases with N , and for large N it “saturates” at H.

(a) Show that the system (1) can be written in dimensionless form as

dx

dτ
= x(1− x)− h x

a+ x

for suitably defined dimensionless quantities x, τ , a, and h. (Write down explicitly the
relations between the original quantities and the dimensionless ones.)

(b) Show that the system can have one, two, or three fixed points, depending on the values
of a and h. Classify the stability of the fixed points in each case.

(c) Analyze the dynamics of the system near x = 0 and show that a bifurcation occurs
when h = a. What kind of bifurcation is it?

(d) Show that another bifurcation occurs when h = 1
4
(a+ 1)2, for a < ac, where ac is some

“critical” value. What is the value of ac? Classify this bifurcation.

(e) Plot the stability diagram of the system in the (a, h) parameter space. Can hysteresis
occur in any of the stability regions?

Problem 2. [Dynamics on a circle]

Consider the interval [−π, π] (with its ends identified) as a model of the circle S. Define the
two-parameter family of functions f : S → R by

f(θ) = ω − a+
a

π
|θ| . (2)
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Figure 1: The graph of the function (2) for ω = 1 and a = 0.9.

This function is piece-wise linear (i.e., its graph consists of segments of straight lines), and
satisfies f(−π) = f(π) = ω, f(0) = ω − a; see Figure 1. For simplicity, in all parts of this
problem assume that ω ≥ 0 .

Consider the system
θ̇ = ω + a|θ| , (3)

where θ : R→ S is an unknown function.

(a) For each value of ω ≥ 0, find an explicit expression for the value of a for which the
system (3) undergoes a bifurcation. What kind of bifurcation is it?

(b) For a given value of ω ≥ 0, and for a value of a in the range in which the system (2)
has exactly two fixed points, θ∗1 and θ∗2 (assume that θ∗1 < θ∗2) find the values of θ∗1 and
θ∗2 expressed in terms of the values of ω and a. Plot these values in the (a, θ∗) plane
for a given value of ω ≥ 0. Indicate the value of ω in the (a, θ∗) plane. Use a solid line
to denote the stable fixed point and a dashed line to denote the unstable fixed point
in the (a, θ∗) plane.

(c) In the (ω, a) plane, indicate the region in which the system (2) has two fixed points,
and the region where it has no fixed points.

(d) For given values of ω ≥ 0 and a such that the system (2) has no fixed points, find the
period T as a function of ω and a. For a given ω ≥ 0, sketch the graph of T vs. a.

Problem 3. [Solution of a constant-coefficient linear system as an exponential]

If M is a square m×m matrix (i.e., a matrix of size m×m with real or complex entries, one
can define the exponential of M as

eM ≡ expM :=
∞∑
j=0

1

j!
Mj , (4)
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where M0 is by definition the identity matrix I. It can be shown that this series converges
for any square matrix M.

Exponentials of matrices are useful for representing the solutions of initial-value problems
for systems of linear ordinary differential coefficients with constant coefficients,

dx

dt
= Ax , t ∈ [0,∞)

x(0) = b .
(5)

(a) Directly from the definition (4), show that MeM = eMM for any square matrix M.

(b) Let A be a given m ×m matrix, and t be a real number. Then one can think of eAt

as a function taking an argument from R and having values in the m × m matrices.

Directly from (4), show that
d

dt
eAt = AeAt and eAt|t=0 = I.

(c) Use your result from part (b) to show that the solution of the initial-value problem (5)
can be written as

x(t) = eAtb .

(d) For any positive real numbers s and t show that eAseAt = eA(s+t) and use this to show
that x(t+ s) = eAsx(t). How can you interpret this result “physically”?

(e) Directly from the definition (4), show that

eTBT
−1

= TeBT−1 .

(f) Compute eBt for B =

(
α 0
0 β

)
.

(g) Rewrite the linear system

ẋ = 2x

ẏ = 3x− y
(6)

in a matrix form as ẋ = Ax. If T =

(
0 1
1 1

)
with inverse T−1 =

(
−1 1
1 0

)
, find

B = T−1AT.

(h) Use your results from the previous part of this problem to write down eAt (where A is
the matrix from the right-hand side of (6)).

(i) Use your result from part (h) to write down the solution of the initial-value problem

consisting of the system (6) and the initial condition x(0) =

(
3
4

)
.
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