
MATH 3413 Homework 11 Due Tue, Nov 21

Sec. 9.5: problems 1, 2, 7, 10, 11.

Hints: In problem 7 the easiest way to find the Fourier expansion of the corresponding
function is to use some trigonometric identity.

In problems 10 and 11, you will have to use two different expansions of the function f(x) =
4x, x ∈ (0, 10): in one case you have to extend it as an odd function on the interval (−10, 10),
and in the other case you have to extend it as an even function on the interval (−10, 10);
you have to decide which expansion to use in which case. Use the fact that the expansion of
the function h(x) = x for x ∈ (0, L), extended to (−L, L) as an even function is
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;

the expansion of h(x) = x for x ∈ (0, L), extended to (−L, L) as an odd function is
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)
(these expansions are obtained in Example 1 in Sec. 9.3).

Additional problem 1. Solve the following initial-boundary value problem for the heat
equation

ut = kuxx , x ∈ [0, L] , t ∈ [0,∞)

u(0, t) = A , u(L, t) = B for t ∈ [0,∞)

u(x, 0) = f(x) for x ∈ [0, L] ,

where A and B are constants, in general nonzero. Since we know how to solve problems
with two homogeneous (i.e., zero) boundary conditions on a pair of opposite sides, we would
be able to solve this problem if A = B = 0. One method to reduce the given problem to a
problem of the type we like is to set

u(x, t) = v(x, t) + `(x) ,

where `(x) := αx + β is a linear function that – for an appropriate choice of the constants
α and β – can be made to satisfy the boundary conditions `(0) = A, `(L) = B. Choose
the constants α and β appropriately, show that the initial-boundary value problem for the
function v(x, t) is

vt = kvxx , x ∈ [0, L] , t ∈ [0,∞)

v(0, t) = 0 , v(L, t) = 0 for t ∈ [0,∞)

v(x, 0) = f(x)− `(x) for x ∈ [0, L] ,
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and solve this problem. Assume that the sine-Fourier expansion of the function f(x) is

f(x) =
∞∑

n=1

fn sin
nπx

L
.

Be careful in formulating the problem for v(x, t); in particular, the initial condition for v(x, t)
will differ from the one for u(x, t). Here are two facts that you will need (when you expand
the function `(x))

1 =
4

π

∑
n=1,3,5,...

sin
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L
, x =

2L

π

∑
n=1,3,5,...

(−1)n+1

n
sin

nπx

L
.

Show that as t →∞, the function v(x, t) will tend to 0, so that the asymptotic behavior of
the temperature u(x, t) is determined completely by the auxiliary function `(x) (recall that
the constant k in the heat equation is strictly positive!). Sketch limt→∞ u(x, t) as a function
of x.

Additional problem 2. In this problem you will make some predictions about the asymp-
totic behavior (i.e., when t →∞) of the solution u(x, t) of the boundary value problem

ut = k uxx + φ(x) , x ∈ [0, L] , t ∈ [0,∞)

u(0, t) = 0 , u(L, t) = 0 for t ∈ [0,∞)

u(x, 0) = f(x) for x ∈ [0, L] .

Physically, this problem describes the temperature distribution in a rod of length L with
insulated side walls and ends at x = 0 and x = L kept at zero temperature. The initial
temperature in the rod is given by the function f(x) and, more interestingly, there are sources
of heat in the rod whose power is given by the function φ(x) in the PDE.

One can solve this problem completely (which you will do in Additional problem 3 below),
but before doing this, try to obtain some information about the behavior of the solution
u(x, t) at large times. Since the temperatures at the ends of the rod do not depend on
time, and the intensity of the sources of heat is time-independent as well, it is clear that
after some initial period of more or less rapid changes, the solution u(x, t) will tend to some
time-independent function. Let us call this function u∞(x):

u∞(x) := lim
t→∞

u(x, t) .

Since this function does not depend on t, it will be a solution of some ordinary differential
equation!

(a) From the PDE given in this problem, obtain an ODE for the function u∞(x).

(b) From the BCs for u(x, t), obtain BCs for u∞(x). Note that the initial condition for
u(x, t) will not matter in the limit t →∞.
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(c) Solve the boundary value problem for the asymptotic temperature distribution u∞(t)

in the case φ(x) = −2 sin
5πx

L
.

(d) Sketch the function u∞(x). Find the highest and the lowest temperatures in the beam
after very long time.

Additional problem 3.
The method of separation of variables can also be used to solve boundary value problems for
non-homogeneous partial differential equations, like the heat equation with a source of heat
of “intensity” φ(x, t):

ut = kuxx + φ(x, t) .

In this problem we will consider one such situation; below I first illustrate the idea on a
problem that you already know how to solve.

The solution of the boundary value problem

ut = k uxx , x ∈ [0, L] , t ∈ [0,∞) (1)

u(0, t) = 0 , u(L, t) = 0 for t ∈ [0,∞) (2)

u(x, 0) = f(x) for x ∈ [0, L] (3)

can be written as an infinite series of the form

u(x, t) =
∞∑

n=1

Tn(t) sin
nπx

L
. (4)

Here the functions Xn(x) = sin nπx
L

satisfy an ordinary differential equation coming from the
separation of variables, as well as the boundary conditions X(0) = 0 and X(L) = 0 (which
come from the boundary conditions u(0, t) = 0 and u(L, t) = 0 for all t ∈ [0,∞)).

Now pretend that you do not know how to find the functions Tn(t). One method of finding
them is to plug the above series for u(x, t) in the PDE and in the initial condition and from
this to derive the ODE for Tn(t) and the corresponding initial condition.

Indeed, from (4) we obtain by differentiating the infinite sum term by term

ut =
∞∑

n=1

T ′n(t) sin
nπx

L
,

ux =
∞∑

n=1

nπ

L
Tn(t) cos

nπx

L
, uxx = −

∞∑
n=1

(nπ

L

)2

Tn(t) sin
nπx

L
.

Plugging these expressions into the PDE ut = k uxx, we obtain

∞∑
n=1

T ′n(t) sin
nπx

L
= −k

∞∑
n=1

(nπ

L

)2

Tn(t) sin
nπx

L
. (5)
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Similarly, from the initial condition u(x, 0) = f(x) we obtain

∞∑
n=1

Tn(0) sin
nπx

L
=

∞∑
n=1

fn sin
nπx

L
, (6)

where fn are the Fourier coefficients of the function f(x) (extended as an odd function from
(0, L) to (−L, L)):

f(x) =
∞∑

n=1

fn sin
nπx

L
.

From (5) and (6) we obtain that the function Tn(t) must satisfy

T ′n(t) +
(nπ

L

)2

k Tn(t) = 0

Tn(0) = fn .

From here we easily obtain

Tn(t) = fn e−(nπ
L )

2
kt .

Now you will have to follow the same pattern to solve the boundary value problem

ut = k uxx + φ(x) , x ∈ [0, L] , t ∈ [0,∞) (7)

u(0, t) = 0 , u(L, t) = 0 for t ∈ [0,∞) (8)

u(x, 0) = f(x) for x ∈ [0, L] . (9)

(a) Since the boundary conditions (8) are the same as (2), you should look for a solution
of the new boundary value problem (7), (8), (9) in the same form as above (namely,
in the form of the series (4)), and you will try to find the functions Tn(t) (of course,
these functions will be different from the functions we have found when we solved the
problem (1), (2), (3)). Plug this form of u(x, t) into the PDE (7) and write down the
ODE that the functions Tn(t) must satisfy. Assume that you know the coefficients φn

of φ(x) in the expansion

φ(x) =
∞∑

n=1

φn sin
nπx

L
.

(b) Plug the series (4) into the initial condition and write down the initial conditions that
must be satisfied by the functions Tn(t).

(c) Solve the initial value problems for the functions Tn(t), and write the solution u(x, t)
in the particular case

f(x) = 3 sin
7πx

L
, φ(x) = −2 sin

5πx

L
.

(d) Show that the solution for u(x, t) obtained in (c) tends to the function u∞(x) obtained
in Additional problem 2(c).
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