
MATH 5463 Homework 10 Due Tue, May 4

Problem 1. Let ψ : R → R be the C∞
c (R) function with suppψ = [−1, 1] (this function was

constructed on page 236 of Folland, but you don’t need its explicit form, just its properties).

(a) Define the sequence {fk}k∈N ⊂ C∞
c (R) by fk(x) =

1

k
cos

(
kπx

2

)
ψ(x). Explain why

sequence does not converge to 0 in D(R), although pointwise fk → 0.

(b) Let {gk}k∈N ⊂ C∞
c (R) be a sequence defined by gk(x) = e−k ψ(x− k). Does this se-

quence converge in the uniform metric? Does it converge in D(R)? Explain briefly.

Problem 2. For t > 0 define the functions

ft : R → R : x 7→ ft(x) =
1

t
χ[0,t](x) .

Clearly, each ft is in L1
loc(R), and, thus, defines a distribution ft ∈ D′(R) by

〈ft, φ〉 =

∫
R
ft(x)φ(x) dx , φ ∈ D(R) .

(a) Find lim
t→0+

〈ft, φ〉. Can you write your result as
∫
φ dµ for some measure µ?

(b) If τs stands for the translation operator (see page 238 of Folland), find 〈τsft, φ〉 and

the limits lim
t→0+

〈τsft, φ〉 and lim
s→0

lim
t→0+

〈
τsft − ft

s
, φ

〉
Can you write your results in the

form
∫
φ dµ for some measures µ?

Problem 3. Let X = [0, 1] and M be the σ-algebra of Borel subsets of X. Let F (t) = t2,
G(t) = t3, and define the measures φ and γ on M by

φ(E) =

∫
E

1 dµF , γ(E) =

∫
E

1 dµG , E ∈M .

Does
dφ

dγ
exist? Does

dγ

dφ
exist? Compute the values of the Radon-Nikodym derivatives that

exist. Justify.

Problem 4. Consider the heat equation in one time and one space dimension,

∂tu(t, x) = ∂xxu(t, x) , t > 0 , x ∈ R

(the name comes from the fact that it describes the propagation of heat in a homogeneous
medium without heat sources in one spatial dimension; here u(t, x) is the temperature of the
medium at time t at the location with spatial coordinate x). Usually one imposes an initial
condition, i.e., a function u0 such that lim

t→0+
u(t, x) = u0(x), and sometimes also conditions

on the behavior of the solution as x→ ±∞.
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(a) Let for t > 0 and x ∈ R, the function u(t, ·) be a solution of the heat equation at time
t that tends to zero fast enough as |x| → ∞. Let û(t, ·) be the Fourier transform of u

with respect to the spatial variable: û(t, ξ) =

∫
R
u(t, x) e−2πiξx dx; the inverse Fourier

transform is u(t, x) =

∫
R
û(t, ξ) e2πiξx dξ (assuming that the functions are in appropriate

function spaces, so that the Fourier transform and its inverse are well defined; e.g., if
u(t, ·) ∈ S and û(t, ·) ∈ S).

Plug u(t, ·) in the heat equation to show that Ĝt satisfies the ordinary differential

equation
dû(t, ξ)

dt
= −4π2ξ2, and find the general solution of this equation; this solution

will contain one arbitrary function of ξ, let’s denote it by A(ξ).

(b) Now plug u in the initial condition lim
t→0+

u(t, x) = u0(x), and find the function A(ξ).

Write the solution of the initial value problem consisting of the heat equation and the
initial condition.

(c) In the rest of this problem you will obtain an important general form of the solutions of
the heat equation. Let Gt(x) stand for the solution of the heat equation corresponding

to the choice A(ξ) ≡ 1. If Ĝt(x) =
∫

RGt(x) e−2πiξx dx is the Fourier transform of Gt)

(in the spatial variable), then what is Ĝt? (This is a trivial question.)

Use the fact that, if f : R → R is the function given by f(x) = e−πax2
(where a > 0 is

a constant), then f̂(ξ) = 1√
a
e−πξ2/a (this is Proposition 8.24 in Folland for n = 1), to

show that Gt(x) =
1√
4πt

e−
x2

4t .

(d) Check by direct substitution that the function Gt obtained in (c) is a solution of the
heat equation.

(e) An approximate identity in R is a family of functions {Kt}t>0, where Kt : R → R, with
the following properties:

sup
t

∫
R
|Kt(y)| dy <∞ , lim

t→0+

∫
R
Kt(y) dy = 1 , lim

t→0+

∫
{|y|>δ}

|Kt(y)| dy = 0 ,

for any constant δ > 0. (This definition of an approximate identity looks different from
the one in Folland, but in fact they are not so different.)

Check that {Gt}t>0 is an approximate identity. You may use that
∫

R e−x2
dx =

√
π.

(f) Prove that the function u(t, x) := (Gt ∗ u0)(x) satisfies the heat equation and the
boundary condition lim

t→0+
u(t, x) = u0(x), for any u0 that decays fast enough at infinity.

Does one need to impose differentiability conditions on u0? Explain briefly.
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