
MATH 5453 Homework 10 Due Thu, Nov 13

Additional problem 1.

(a) Prove that the Riemann integral

∫ ∞

0

sin(2πx)

x
dx exists (you need not compute its

value, which, incidentally, is π
2
).

Hint: What do you know about the convergence of alternating series whose terms
decrease by absolute value?

(b) Prove that the function f : [0,∞) → R : x 7→ sin (2πx)

x
is not Lebesgue integrable.

Additional problem 2.

(a) Let (X,M, µ) be a finite measure space. Prove that fn → f µ-a.e. if and only if, for
any m ∈ N,

lim
n→∞

µ

({
x ∈ X : sup

k≥n
|fk(x)− f(x)| ≥ 1

m

})
= 0 .

Please clearly point out where you use the fact that µ(X) < ∞.

Remark: Note that this condition is equivalent to

lim
n→∞

µ

({
x ∈ X : sup

k≥n
|fk(x)− f(x)| ≥ ε

})
= 0 for any ε > 0 ,

but is more convenient to use because it is easier to work with countable sets.

Hint: First establish the equalities

{x ∈ X : fn(x) 9 f(x) as n →∞}

=
⋃

m∈N

{
x ∈ X : |fn(x)− f(x)| ≥ 1

m
for infinitely many n

}

=
⋃

m∈N

⋂
n∈N

{
x ∈ X : sup

k≥n
|fk(x)− f(x)| ≥ 1

m

}
.

(b) Use your result from part (a) to show that, if µ(X) < ∞, the µ-almost everywhere
convergence implies convergence in measure.

(c) Give an example of a measure space (X,M, µ) and a sequence of functions {fn} on X
that converges almost everywhere but not in measure (clearly, the measure of X must
be infinite).
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Additional problem 3.

Let (X,M, µ) be a measure space.

(a) Let {gn}∞n=1 be a sequence of functions gn : X → R, and g : X → R. How are the sets

{x ∈ X : gj(x) 9 g(x) as j →∞} ,⋃
m∈N

{
x ∈ X : |gj(x)− g(x)| ≥ 1

m
for infinitely many j

}
,

⋃
m∈N

⋂
j∈N

⋃
`≥j

{
x ∈ X : |g`(x)− g(x)| ≥ 1

m

}
,

and ⋃
m∈N

lim sup
j→∞

{
x ∈ X : |gj(x)− g(x)| ≥ 1

m

}
related? Support your answer with brief explanations.

(b) Prove that a necessary and sufficient condition for the function sequence {fn}∞n=1 to
converge to f in measure is that each subsequence {fnk

}∞k=1 ⊂ {fn}∞n=1 contains a
subsequence {fnkj

}∞j=1 ⊂ {fnk
}∞k=1 such that fnkj

→ f a.e. as j →∞.

Hint: The necessity of the condition follows easily from Theorem 2.30.

To prove that the condition is sufficient, choose a subsequence {nkj
}j ⊂ {nk}k such

that µ({x ∈ X : |fnk
(x) − f(x)| ≥ 1

2j }) < 1
2j for all k ≥ kj, use some of the facts

proved in part (a), and apply the first Borel-Cantelli Lemma (Additional Problem 2 in
Homework 3).

Additional problem 4.

(a) Prove that, if µ(X) < ∞ and h : X → [−∞,∞] is a measurable function that takes
finite values on a set of full measure, then

lim
k→∞

µ ({x ∈ X : |h(x)| > k}) = 0 .

Hint: Define the sets E := {x ∈ X : |h(x)| = ∞}, and Ek := {x ∈ X : |h(x)| > k} for
k ∈ N, and apply some fundamental properties of measures.

(b) Give an example of a space X with µ(X) = ∞ and a measurable function f : X → R
for which µ ({x ∈ X : |h(x)| > k}) does not go to zero as k →∞.

(c) In Additional Problem 1 of Homework 9 you showed that, if fn → f in measure and
gn → g in measure, and α ∈ R is a constant, then then αfn → αf in measure, and
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fn + fn → f + g in measure. The product of two function sequences, however, does
not converge in measure unless some additional condition is imposed.

Prove that, if µ(X) < ∞, then fngn → fg in measure.

Hint: Start with proving the inequality

|fn(x)gn(x)− f(x)g(x)| ≤ |fn(x)− f(x)| |gn(x)− g(x)|
+|f(x)| |gn(x)− g(x)|+ |g(x)| |fn(x)− f(x)| .

Use this inequality to give an upper bound on µ ({x : |fn(x)gn(x)− f(x)g(x)| ≥ ε})
in terms of the measures of the set

{
x : |fn(x)gn(x)− f(x)g(x)| ≥ ε

3

}
, and the sets{

x : |f(x)| |gn(x)− g(x)| ≥ ε
3

}
and

{
x : |g(x)| |fn(x)− f(x)| ≥ ε

3

}
. Use the result of

part (a) to bound the measures of the last two sets.

(d) Consider the functions fn : [0,∞) → R : x 7→ fn(x) = x+ 1
n
, and f : [0,∞) → R : x 7→

f(x) = x. Demonstrate that fn → f in measure, but f 2
n 9 f 2 in measure. Explain

why this does not contradict the fact proved in part (c).

Additional problem 5.

Let E be a collection of subsets of some set X satisfying the following properties:

(i) ∅ ∈ E ;

(ii) if E ∈ E and F ∈ E , then E ∩ F ∈ E ;

(iii) the complement of each set E ∈ E is a finite disjoint union of sets from E .

Let A be the collection of finite disjoint unions of members of E . Use induction to prove
that A is an algebra.

Remark: We used this fact in the lectures to show that the collection A of all finite disjoint
unions of measurable rectangles A×B (where A ∈M, B ∈ N ) is an algebra; the σ-algebra
generated by A is by definition the product σ-algebra M⊗N .
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