Problem 1. [Parallelogram identity]

(a) Let H be an inner product linear space. Prove the parallelogram identity,

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) \quad \text { for any } u, v \in H .
$$

(b) Consider the functions $f(x)=x$ and $g(x)=1-x$ defined on $[0,1]$ to show that $C[0,1]$ (with the sup-norm) is not an inner product linear space.

Problem 2. [The space $H^{1}(\Omega)$]
Let $\Omega=B_{1}(\mathbf{0})$ be the unit ball in \mathbb{R}^{2} centered at the origin $\mathbf{0}$, and let $u(\mathbf{x})=|\mathbf{x}|^{\alpha}(\mathbf{x} \neq \mathbf{0})$ for some $\alpha \in \mathbb{R}$.
(a) For which values of α does the function u belong to $L^{2}(\Omega)$?
(b) For which values of α does the function u belong to $H^{1}(\Omega)$?

Problem 3. [Weak solution of Poisson's equation on [0,1$]$]

Let $a \in(0,1)$ and δ_{a} be the " δ-function concentrated at a ", i.e., the distribution $\delta_{a} \in \mathscr{D}^{\prime}([0,1])$ defined by

$$
\left\langle\delta_{a}, \phi\right\rangle=\phi(a), \quad \phi \in \mathscr{D}([0,1]) .
$$

(a) Explain why $H^{-1}([0,1])$.
(b) Find the weak solution $u \in H_{0}^{1}([0,1])$ of the Poisson's equation

$$
-\Delta u=\delta_{a} .
$$

Remark: The solution of this problem has a simple physical meaning: it describes the equilibrium shape of a string with both ends firmly attached at the points $x=0$ and $x=1$, with a unit load attached to the string at the point $x=a$.

Problem 4. [The space $H^{-1}(\Omega)$]

Let $\Omega=B_{1}(\mathbf{0})$ be the (open) unit ball in \mathbb{R}^{2} centered at the origin $\mathbf{0}, \Lambda \subset \Omega$ be a compact subset of Ω, and χ_{Λ} be the indicator function of Λ.
(a) How is the distribution $\nabla \chi_{\Lambda}$ defined? (Just follow the general definition, inspired by Green's formulas.)
(b) In the light of Theorem 7.6 from page 401 of Salsa's book, explain why $\nabla \chi_{\Lambda}$ is an element of $H^{-1}(\Omega)$.
(c) Let $a \in\left(0, \frac{1}{2}\right)$ and $\Lambda=\overline{B_{a}(\mathbf{0})} \subset \Omega$ be the closed ball of radius a. Let $\mathbf{u} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{2}\right)$ be a defined by

$$
\mathbf{u}(\mathbf{x})= \begin{cases}\left(\frac{1}{2}-|\mathbf{x}|^{2}\right)^{5} \mathbf{i} & \text { for }|\mathbf{x}| \leq \frac{1}{2} \\ \mathbf{0} & \text { for }|\mathbf{x}| \in\left(\frac{1}{2}, 1\right)\end{cases}
$$

(where \mathbf{i} is the unit vector in positive x-direction). Compute the value of $\left\langle\nabla \chi_{\Lambda}, \mathbf{u}\right\rangle$.

