Problem 1. [Parallelogram identity]

(a) Let H be an inner product linear space. Prove the *parallelogram identity*,

$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$$
 for any $u, v \in H$.

(b) Consider the functions f(x) = x and g(x) = 1 - x defined on [0, 1] to show that C[0, 1] (with the sup-norm) is *not* an inner product linear space.

Problem 2. [The space $H^1(\Omega)$]

Let $\Omega = B_1(\mathbf{0})$ be the unit ball in \mathbb{R}^2 centered at the origin $\mathbf{0}$, and let $u(\mathbf{x}) = |\mathbf{x}|^{\alpha} \ (\mathbf{x} \neq \mathbf{0})$ for some $\alpha \in \mathbb{R}$.

- (a) For which values of α does the function u belong to $L^2(\Omega)$?
- (b) For which values of α does the function u belong to $H^1(\Omega)$?

Problem 3. [Weak solution of Poisson's equation on [0,1]]

Let $a \in (0, 1)$ and δ_a be the " δ -function concentrated at a", i.e., the distribution $\delta_a \in \mathscr{D}'([0, 1])$ defined by

$$\langle \delta_a, \phi \rangle = \phi(a) , \qquad \phi \in \mathscr{D}([0,1]) .$$

- (a) Explain why $H^{-1}([0,1])$.
- (b) Find the weak solution $u \in H_0^1([0,1])$ of the Poisson's equation

$$-\Delta u = \delta_a$$
 .

Remark: The solution of this problem has a simple physical meaning: it describes the equilibrium shape of a string with both ends firmly attached at the points x = 0 and x = 1, with a unit load attached to the string at the point x = a.

Problem 4. [The space $H^{-1}(\Omega)$]

Let $\Omega = B_1(\mathbf{0})$ be the (open) unit ball in \mathbb{R}^2 centered at the origin $\mathbf{0}, \Lambda \subset \Omega$ be a compact subset of Ω , and χ_{Λ} be the indicator function of Λ .

(a) How is the distribution $\nabla \chi_{\Lambda}$ defined? (Just follow the general definition, inspired by Green's formulas.)

- (b) In the light of Theorem 7.6 from page 401 of Salsa's book, explain why $\nabla \chi_{\Lambda}$ is an element of $H^{-1}(\Omega)$.
- (c) Let $a \in (0, \frac{1}{2})$ and $\Lambda = \overline{B_a(\mathbf{0})} \subset \Omega$ be the closed ball of radius a. Let $\mathbf{u} \in H_0^1(\Omega, \mathbb{R}^2)$ be a defined by

$$\mathbf{u}(\mathbf{x}) = \begin{cases} \left(\frac{1}{2} - |\mathbf{x}|^2\right)^5 \mathbf{i} & \text{for } |\mathbf{x}| \le \frac{1}{2} \\ \mathbf{0} & \text{for } |\mathbf{x}| \in (\frac{1}{2}, 1) \end{cases}$$

(where **i** is the unit vector in positive *x*-direction). Compute the value of $\langle \nabla \chi_{\Lambda}, \mathbf{u} \rangle$.