
MATH 5163 Homework 1 Due Thu, 1/23/14

Problem 1. Consider the first-order PDE

xux + yuuy = u (1)

for the unknown function u(x, y), in the first quadrant, i.e., in the domain

U := {(x, y) ∈ R2 : x > 0, y > 0} .

(a) Prove that, for any smooth function φ of one variable, the function u(x, y) defined
implicitly by the relation

u = ln y + φ
(u
x

)
(2)

satisfies the PDE (1).

Hint: The easiest way to do this is to write (2) as

u(x, y) = ln y + φ

(
u(x, y)

x

)
,

and to differentiate this relation with respect to x and y in order to obtain explicit
expressions for ux and uy (which, of course, will contain derivatives of the function φ),
and then show that these expressions satisfy the PDE (1).

Remark: Note that the form of the relation (2) is consistent with the fact mentioned
in class that the general solution of an order-k PDE for an unknown function u of m
variables contains k arbitrary functions of (m− 1) variables.

(b) Now, in addition to the PDE (1), let us impose on u the condition that, on the part of
the curve y = ex that lies in the 1st quadrant – which can be written in a parametric
form as {(x(t), y(t)) = (t, et) : t > 0} – the value of the function u is given by

u(t, et) =
t2

t+ 1
. (3)

The solution of the 1st order PDE (2) that also satisfies the condition (3) is

u(x, y) =
x ln y

x+ 1
. (4)

Check that the function (4) satisfies the condition (3).

(c) The function u(x, y) defined in (4) belongs to the family of functions defined by (2).
What is the particular form of the function φ for which the function u defined implicitly
by (2) takes the form (4)?
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Problem 2. Find the general solution of the partial differential equation

uxxy =
2y

x

for the function u(x, y). Do not forget that your answer should contain a certain number of
arbitrary functions!

Problem 3. In class we wrote the equation describing the motion of a membrane in the
Earth’s gravity field,

ρ utt = τ ∆u− ρg . (5)

Here u(x, y, t) is the function that describes the position of the membrane at time t by
z = u(x, y, t), where (x, y) ∈ U ⊂ R2; ρ is the density of the membrane (i.e., the mass per
unit area), τ is the surface tension, and g = 9.8 m/s2 is the free-fall acceleration.

In this problem you will study the equilibrium shape of a circular membrane acted upon by
the gravity field. Since the equilibrium shape of the membrane does not depend on the time,
the unknown function u become a function only of x and y, i.e., the equilibrium shape of
the membrane is given by z = u(x, y) (we use the same letter for the unknown function as
above although, clearly, it represents a different function). The function u(x, y) satisfies the
Poisson equation

∆u =
ρg

τ
, (6)

which follows directly from (5) by setting all time derivatives equal to zero.

In the steps below you will find the shape of a membrane attached to a wire with a shape of
a circle of radius a, i.e., you will solve the boundary value problem

∆u =
ρg

τ
, (x, y) ∈ U := {(x, y) : x2 + y2 ≤ a2} ,

u|∂U = 0 .
(7)

Because of the symmetry of the problem, it is clear that, if we use polar coordinates (r, θ)
in the (x, y)-plane, the function describing the shape of the membrane will depend only
on r. Therefore, in polar coordinates the Poisson equation in (7) will become an ordinary
differential equation. Below you will first compute the Laplacian ∆ in polar coordinates,
and then will find the equilibrium shape of the membrane.

The polar coordinates (r, θ) in R2 are defined in terms of the Cartesian coordinates (x, y) by

x = X(r, θ) := r cos θ ,

y = Y (r, θ) := r sin θ ,
(8)
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and the inverse change is given by

r = R(x, y) =
√
x2 + y2 ,

θ = Θ(x, y) =


arctan y

x
, x > 0

π + arctan y
x
, x < 0

π
2
, x = 0 , y > 0

3π
2
, x = 0 , y < 0.

(9)

Despite the complicated form of the function Θ(x, y), its geometric meaning is very simple –
it is the angle between the positive x-direction and the line connecting the origin of R2 with
the point (x, y) (in counterclockwise direction). Here the capital letters X, Y , R, and Θ are
used to denote functions, while x, y, r, and θ stand for variables.

Now we define the function ũ(r, θ), which is equal to the function u(x, y) if polar coordinates
are used. By definition,

ũ(r, θ) := u(x, y)
∣∣∣
x=X(r,θ), y=Y (r,θ)

= u(X(r, θ), Y (r, θ)) ,

where the functions X and Y are as in (8). This can also be written as

u(x, y) = ũ(R(x, y),Θ(x, y)) . (10)

with R and Θ given by (9).

Here are some results that you will need in your calculations:

∂R

∂x
=

x√
x2 + y2

,
∂R

∂y
=

y√
x2 + y2

,
∂Θ

∂x
= − y

x2 + y2
,

∂Θ

∂y
=

x

x2 + y2
.

∂2R

∂x2
=

y2

(x2 + y2)3/2
,

∂2R

∂y2
=

x2

(x2 + y2)3/2
,

∂2Θ

∂x2
=

2xy

(x2 + y2)2
,

∂2Θ

∂y2
= − 2xy

(x2 + y2)2
.

(a) Express uxx and uyy in terms of the function ũ and its derivatives. You have to use
(10) and the chain rule as follows:

ux(x, y) =
∂

∂x
u(x, y) =

∂

∂x
ũ(R(x, y),Θ(x, y)) =

∂ũ

∂r

∂R

∂x
+
∂ũ

∂θ

∂Θ

∂x
,
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and for the second x-derivative,

uxx(x, y) =
∂

∂x
ux(x, y) =

∂

∂x

(
∂ũ

∂r

∂R

∂x
+
∂ũ

∂θ

∂Θ

∂x

)
=
∂2ũ

∂r2

(
∂R

∂x

)2

+
∂2ũ

∂r ∂θ

∂R

∂x

∂Θ

∂x
+
∂ũ

∂r

∂2R

∂x2

+
∂2ũ

∂r ∂θ

∂R

∂x

∂Θ

∂x
+
∂2ũ

∂θ2

(
∂Θ

∂x

)2

+
∂ũ

∂θ

∂2Θ

∂x2

= ũrr
x2

x2 + y2
+ ũrθ

x√
x2 + y2

(
− y

x2 + y2

)
+ ũr

y2

(x2 + y2)3/2

+ ũrθ
x√

x2 + y2

(
− y

x2 + y2

)
+ ũθθ

(
− y

x2 + y2

)2

+ ũθ
2xy

(x2 + y2)2

= ũrr
x2

x2 + y2
− ũrθ

2xy

(x2 + y2)3/2
+ ũr

y2

(x2 + y2)3/2

+ ũθθ
y2

(x2 + y2)2
+ ũθ

2xy

(x2 + y2)2
.

Write down the calculations for uy and uyy in detail.

(b) Use your result from (a) to show that in polar coordinates the Laplacian is given by

∆ũ = ũrr +
1

r
ũr +

1

r2
ũθθ =

1

r

∂

∂r

(
r
∂ũ

∂r

)
+

1

r2
ũθθ .

(c) Since for a circular membrane the coordinate θ is immaterial, set ṽ(r) := ũ(r, θ), and
rewrite the boundary value problem (7) as a boundary value problem for ṽ(r):

1

r

d

dr

(
r

dṽ

dr

)
=
ρg

τ
, r ∈ [0, a] ,

|ṽ(0)| <∞ , ṽ(a) = 0 .

(11)

Explain how this boundary value problem was obtained; in particular, where did the
boundary conditions come from?

(d) Solve the boundary value problem (11) explicitly to find the equilibrium shape of the
membrane. Please explain clearly how you apply the boundary conditions to find the
two arbitrary constants coming from the integration.

(e) How far is the lowest point of the membrane from the (x, y)-plane?
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