
MATH 4163 Homework 1 Due Thu, Aug 30, 2012

Problem 1. Two norms, ‖ ‖ and ‖ ‖′, on the same vector space V are said to be equivalent
if there exist positive constants A and B such that

A‖u‖ ≤ ‖u‖′ ≤ B‖u‖ for any u ∈ V .

Consider the vector space Rn with the following norms defined on it:

‖u‖1 :=
n∑

j=1

|uj| , ‖u‖2 :=

(
n∑

j=1

|uj|2
)1/2

, ‖u‖∞ := max
1≤j≤n

|uj| .

One can prove that the norms ‖ ‖1 and ‖ ‖∞ on Rn are equivalent as follows: for an arbitrary
vector u ∈ Rn we have

‖u‖1 =
n∑

j=1

|uj| ≤
n∑

j=1

max
1≤k≤n

|uk| ≤ n max
1≤k≤n

|uk| = n‖u‖∞ ,

(where we used the obvious fact that |uj| ≤ max
1≤k≤n

|uk| for any j = 1, . . . , n), and

‖u‖∞ = max
1≤k≤n

|uk| ≤
n∑

j=1

|uj| = ‖u‖1 ,

hence
‖u‖∞ ≤ ‖u‖1 ≤ n‖u‖∞ ,

which proves our claim (for the choice of constants A = 1, B = n).

(a) Prove that the norms ‖ ‖2 and ‖ ‖∞ are equivalent.

(b) Prove that the norms ‖ ‖1 and ‖ ‖2 are equivalent.

Hint: From the fact that ‖ ‖1 and ‖ ‖∞ are equivalent, and the fact that ‖ ‖2 and
‖ ‖∞ are equivalent (proved in part (a)), you can solve part (b) without any additional
calculations.

Problem 2. Many theorems that hold in finite-dimensional spaces are not true in infinite-
dimensional spaces. One can think of the real infinite-dimensional space R∞ as the space of
infinite sequences: u = (u1, u2, u3, . . .), where uj are real numbers (j ∈ N := {1, 2, 3, . . .}).
In this space we can define the norms ‖ ‖1, ‖ ‖2, and ‖ ‖∞ as usual:

‖u‖1 :=
∑
j∈N

|uj| , ‖u‖2 :=

(∑
j∈N

|uj|2
)1/2

, ‖u‖∞ := sup
j∈N
|uj| .
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Here sup
j∈N

aj (the “supremum”) is the smallest number a such that aj ≤ a for all j ∈ N. The

supremum over a finite set of real numbers is the same as the maximum over this set. For
an infinite set, however, the set may not have a maximum, but it always has a supremum
(which may be finite or infinite); for example, the set {5−1, 5− 1

2
, 5− 1

3
, 5− 1

4
, . . . , 5− 1

k
, . . .}

has a supremum (equal to 5), but does not have a maximum (because none of the elements
of the set is equal to 5).

(a) Give an explicit example of a sequence u such that ‖u‖∞ <∞, but ‖u‖1 is infinite.

Hint: How about u = (1, 1, 1, . . .)?

(b) Give an explicit example of a sequence u such that ‖u‖∞ <∞, but ‖u‖2 is infinite.

(c) Give an explicit example of a sequence u such that ‖u‖2 <∞, but ‖u‖1 is infinite.

Hint: Think how you can use the following facts:

∞∑
j=1

1

j2
=
π2

6
,

∞∑
j=1

1

j
=∞ .

Problem 3. In this problem, a “polynomial” means a polynomial of a real variable with
real coefficients (so that both x and P (x) are real numbers). As discussed in class, the
polynomials of order no higher than n form a linear space with respect to the addition of
polynomials and multiplication of a polynomial by a real number as follows: if P and Q are
polynomials of degree ≤ n and α ∈ R, then the polynomials P +Q and αP are defined as

(P +Q)(x) := P (x) +Q(x) , (αP )(x) := αP (x) .

Let Vn(a, b;w(x)) stand for the linear space of polynomials defined on the interval with left
end a and right end b (at each end, the interval can be open or closed; a and b can be finite
or infinite) of degree no greater than n endowed with the inner product

〈P,Q〉 =

∫ b

a

P (x)Q(x)w(x) dx .

Samer defined a family of polynomials which he denoted (very modestly!) by S0, S1, S2, . . ..
These polynomials satisfy the following conditions:

(i) the polynomial Sk is of degree k;

(ii) the coefficient of xk in Sk is equal to 1 (such polynomials are called monic);

(iii) the polynomials S0, S1, S2, . . ., Sn form an orthogonal basis in the space of polynomials
Vn(0,∞;w(x) = e−x).
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In the solution of this problem the following identity will be handy:∫ ∞
0

xk e−x dx = k!

(where, by definition, 0! = 1).

(a) Clearly, S0(x) = 1 for each x ∈ [0,∞). Find the only monic polynomial S1 of degree 1
that is orthogonal to S0 (i.e., such that 〈S1, S0〉 = 0).

(b) Find the only monic quadratic polynomial S2 that is orthogonal to both S0 and S1.

(c) Show that the polynomial P (x) = x2 + 3 can be represented as a linear combination
of the polynomials S0, S1 and S2 as follows: P = S2 + 4S1 + 5S0.

(d) Show by direct integration that 〈S0, S0〉 = 1, 〈S1, S1〉 = 1, 〈S2, S2〉 = 4.

(e) Find the orthogonal projection, projS0+2S1
P , of the polynomial P (x) = x2 + 3 onto the

“ straight line”
` := {t(S0 + 2S1) | t ∈ R}

in the 3-dimensional inner product linear space V2(0,∞; e−x). If you have solved part
(c), then finding this orthogonal projection should be easy.

Hint: If u and v are vectors in the inner product linear space V , then the orthogonal
projection of the vector u onto the straight line in the direction of v is the vector

projvu =
〈u,v〉
〈v,v〉

v

– see the picture below.

projv u

u

v

(f) Finally, let S̃k := µkSk, where µk > 0 is a constant (depending on k) such that the
norm, ∥∥∥S̃k

∥∥∥ :=

√〈
S̃k, S̃k

〉
,

of the polynomial S̃k is 1. Find the explicit expressions for S̃0(x), S̃1(x), and S̃2(x).
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