Additional problem assigned on 10/31/2017

Additional problem. Let f be a smooth (i.e., differentiable infinitely many times) function defined on the whole real line \mathbb{R}, which takes only strictly positive values, i.e., such that

$$
\begin{equation*}
f(x)>0 \quad \text { for all } x \in \mathbb{R} . \tag{1}
\end{equation*}
$$

Define the function g as square root of f, i.e.,

$$
g(x):=\sqrt{f(x)} \quad \text { for all } x \in \mathbb{R} .
$$

Clearly, the function g is well defined because of the condition (1) on f. Moreover, g is a composition of two smooth functions (namely, f and square root), so that it is smooth as well.
(a) Derive the formula

$$
g^{\prime}(x)=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}} .
$$

Which rules for differentiation did you need to derive this formula?
(b) Use your result in part (a) to prove that the functions f and g have the same critical numbers (i.e., that c is a critical number of f exactly when it is a critical number of g).
(c) Let c be a critical number of the function f. Prove that

$$
\begin{equation*}
g^{\prime \prime}(c)=\frac{f^{\prime \prime}(c)}{2 \sqrt{f(c)}} . \tag{2}
\end{equation*}
$$

To derive this formula, you first have to find $g^{\prime \prime}(x)$ for a general x, and then to set $x=c$ and to explain why your formula for $g^{\prime \prime}(x)$ simplifies to (2).
(d) Use (2) to show that g has a local maximum exactly at the same points where f has a local maximum, and that g has a local minimum exactly at the same points where f has a local minimum.

Remark. This problem justifies the trick used in Example 3 of Section 3.7, where we minimized the square of the distance d, instead of the distance itself (to avoid dealing with square roots).

