MATH 2433 - Additional problem assigned on 10/7/14

Additional problem.

Let $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$. In class we showed that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}|\mathbf{r}(t)|=\frac{\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)}{|\mathbf{r}(t)|} \tag{1}
\end{equation*}
$$

(this is Exercise 13.2/53 from the book). In this problem you will derive several other expressions for derivatives related to vector functions.
(a) Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{|\mathbf{r}(t)|}=-\frac{1}{|\mathbf{r}(t)|^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t}|\mathbf{r}(t)|=-\frac{\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)}{|\mathbf{r}(t)|^{3}}
$$

Hint: Use (1) and the identity

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{\phi(t)}=-\frac{1}{\phi(t)^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t} \phi(t)
$$

for a function ϕ of one variable like in Calculus I (the identity for ϕ follows directly from the Chain Rule for a function of one variable).
(b) Use your result from part (a) to show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\mathbf{r}(t)}{|\mathbf{r}(t)|}=-\frac{\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)}{|\mathbf{r}(t)|^{3}} \mathbf{r}(t)+\frac{\mathbf{r}^{\prime}(t)}{|\mathbf{r}(t)|}
$$

(c) The vector $\mathbf{u}(t):=\frac{\mathbf{r}(t)}{|\mathbf{r}(t)|}$ is a unit vector in the direction of $\mathbf{r}(t)$. We know from Example 4 in Section 13.2 that if a vector $\mathbf{u}(t)$ has constant length, then the vector is perpendicular to its derivative, i.e., $\mathbf{u}(t) \cdot \mathbf{u}^{\prime}(t)=0$. Use your result from part (b) to show by a direct calculation that

$$
\frac{\mathbf{r}(t)}{|\mathbf{r}(t)|} \cdot \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\mathbf{r}(t)}{|\mathbf{r}(t)|}=0
$$

as it should be.

