Additional problem assigned on 9/26/2017

Additional problem. Consider the function defined implicitly by the relation

$$
\begin{equation*}
x^{3}-y^{3}=7 . \tag{1}
\end{equation*}
$$

(a) Prove that the point $\left(x^{*}, y^{*}\right)=(2,1)$ belongs to the curve described by the equation (1).
(b) Use implicit differentiation to find the derivative $\frac{d y}{d x}$ as a function of x and y.
(c) Compute the value of $\left.\frac{d y}{d x}\right|_{(2,1)}$.
(d) Write down the equation of the tangent line to the curve described by the equation (1) at the point $(2,1)$. Figure 1 shows the curve and the tangent line to it at the point $(2,1)$.
(e) Use implicit differentiation again to show that the second derivative $\frac{d^{2} y}{d x^{2}}$ as a function of x and y is given by

$$
\frac{d^{2} y}{d x^{2}}=\frac{2 x}{y^{2}}\left(1-\frac{x^{3}}{y^{3}}\right)=\frac{2 x}{y^{2}} \frac{y^{3}-x^{3}}{y^{3}}=-\frac{14 x}{y^{5}} .
$$

What did you use at the last step in this chain of equalities?
(f) Find the value $\left.\frac{d^{2} y}{d x^{2}}\right|_{(2,1)}$ of the second derivative at the point $(2,1)$.

Figure 1: The curve described by equation (1) and the tangent line to it at the point $(2,1)$.

