MATH 2433 Additional Problem assigned on 8/21/2014

As we discussed in class, vectors are objects for which two operations are defined: addition of two vectors, and multiplication of a vector by a scalar, and these two operations satisfy certain properties (which we take as axioms that define vectors). Below, \mathbf{a}, \mathbf{b}, and \mathbf{c} are arbitrary vectors, and α and β are arbitrary scalars.
$(+)$ Axioms of addition:
$\left(+_{1}\right) \mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$ (commutativity of addition);
$\left(+_{2}\right) \mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c}$ (associativity of addition);
$\left(+_{3}\right)$ there exists a vector $\mathbf{0}$ (called a zero vector) such that $\mathbf{a}+\mathbf{0}=\mathbf{a}$ for any vector \mathbf{a};
$\left(+_{4}\right)$ for any vector a there exists a vector $\widetilde{\mathbf{a}}$ such that $\mathbf{a}+\widetilde{\mathbf{a}}=\mathbf{0}$.
(\cdot) Axioms of multiplication of a vector and a scalar:
$\left({ }_{1}\right)(\alpha \beta) \mathbf{a}=\alpha(\beta \mathbf{a}) ;$
$(\cdot 2) \mathbf{1} \mathbf{a}=\mathbf{a}$.
$(+\cdot)$ Axioms connecting the addition of vectors with the multiplication of a vector and a scalar ("distributive laws"):

$$
\begin{aligned}
& \left(+\cdot{ }_{1}\right) \quad(\alpha+\beta) \mathbf{a}=\alpha \mathbf{a}+\beta \mathbf{a} \\
& \left(+\cdot{ }_{2}\right) \alpha(\mathbf{a}+\beta)=\alpha \mathbf{a}+\alpha \mathbf{b} .
\end{aligned}
$$

In class we proved the following result (the symbol \square indicates the end of the proof).
Theorem A. The zero vector is unique.
Proof. Assume that there are two zero vectors, $\mathbf{0}$ and $\mathbf{0}^{\prime}$. Then we have

$$
\mathbf{0} \stackrel{(1)}{=} \mathbf{0}+\mathbf{0}^{\prime} \stackrel{(2)}{=} \mathbf{0}^{\prime}+\mathbf{0} \stackrel{(3)}{=} \mathbf{0}^{\prime}
$$

Here we used the following facts (the numbering below corresponds to the numbering of the three equalities in the chain above):

- the equality (1) used the fact that $\mathbf{0}^{\prime}$ is a zero vector, therefore $\mathbf{a}+\mathbf{0}^{\prime}=\mathbf{a}$ for any vector \mathbf{a}, in particular, for $\mathbf{a}=\mathbf{0}$; in other words, we used Axiom $\left(+_{3}\right)$ with $\mathbf{a}=\mathbf{0}$;
- the equality (2) used Axiom $\left(+_{1}\right)$ (the commutativity of addition);
- the equality (3) used the fact that $\mathbf{0}$ is a zero vector, therefore $\mathbf{a}+\mathbf{0}=\mathbf{a}$ for any vector \mathbf{a}, in particular, for $\mathbf{a}=\mathbf{0}^{\prime}$; in other words, we used Axiom $\left(+{ }_{3}\right)$ with $\mathbf{a}=\mathbf{0}^{\prime}$.

Problem 1. Complete the proof of the following theorem.
Theorem B. Any vector a has only one"opposite" vector $\widetilde{\mathbf{a}}$ (which satisfies $\mathbf{a}+\widetilde{\mathbf{a}}=\mathbf{0}$).
Proof. Assume that there are two vectors, $\widetilde{\mathbf{a}}$ and $\widetilde{\mathbf{a}}^{\prime}$, that are opposite to \mathbf{a}, i.e., such that $\mathbf{a}+\widetilde{\mathbf{a}}=\mathbf{0}$ and $\mathbf{a}+\widetilde{\mathbf{a}}^{\prime}=\mathbf{0}$. Then the following equalities hold:

$$
\widetilde{\mathbf{a}} \stackrel{(1)}{=} \widetilde{\mathbf{a}}+\mathbf{0} \stackrel{(2)}{=} \widetilde{\mathbf{a}}+\left(\mathbf{a}+\widetilde{\mathbf{a}}^{\prime}\right) \stackrel{(3)}{=}(\widetilde{\mathbf{a}}+\mathbf{a})+\widetilde{\mathbf{a}}^{\prime} \stackrel{(4)}{=} \mathbf{0}+\widetilde{\mathbf{a}}^{\prime} \stackrel{(5)}{=} \widetilde{\mathbf{a}}^{\prime}+\mathbf{0} \stackrel{(6)}{=} \widetilde{\mathbf{a}}^{\prime}
$$

The reasons why these equalities hold are the following:

- the equality (1) used Axiom $\left(+_{3}\right)$ (existence of a zero vector);
- the equality (2) used . . .;
- the equality (3) used . . .;
- the equality (4) used . . .;
- the equality (5) used ...;
- the equality (6) used....

Food for thought. ${ }^{1}$ Think about the proofs of the following theorems.
Theorem C. The product of 0 and any vector \mathbf{a} is equal to the zero vector: $0 \mathbf{a}=\mathbf{0}$.
Proof. From Theorem A we know that the zero vector is unique. Therefore, if we know that for some vector \mathbf{b} we have $\mathbf{a}+\mathbf{b}=\mathbf{a}$ for any vector \mathbf{a}, then $\mathbf{b}=\mathbf{0}$. Thus, if we prove that $\mathbf{a}+0 \mathbf{a}=\mathbf{a}$ for an arbitrary vector \mathbf{a}, this would imply that $0 \mathbf{a}=\mathbf{0}$. Indeed, we have

$$
\mathbf{a}+0 \mathbf{a} \stackrel{(1)}{=} 1 \mathbf{a}+0 \mathbf{a} \stackrel{(2)}{=}(1+0) \mathbf{a} \stackrel{(3)}{=} 1 \mathbf{a} \stackrel{(4)}{=} \mathbf{a}
$$

where the equality (1) holds because...
Theorem D. For any vector a, its opposite, $\widetilde{\mathbf{a}}$, is equal to (-1) a.
Proof. According to Theorem B, for any a, the vector $\widetilde{\mathbf{a}}$ is unique. Therefore, if we prove that $\mathbf{a}+(-1) \mathbf{a}=\mathbf{0}$, this will imply that $\widetilde{\mathbf{a}}=(-1) \mathbf{a}$. The proof follows from the following chain of equalities: ...

Theorem E. For any vector \mathbf{a} we have $\mathbf{a}+\mathbf{a}=2 \mathbf{a}$.
Proof. Do it yourself.

[^0]
[^0]: 1 "Food for thought" problems are interesting problems you may try to solve, but are not to be turned in.

