MATH 2433 Additional Problem assigned on 8/21/2014

As we discussed in class, vectors are objects for which two operations are defined: addition of two vectors, and multiplication of a vector by a scalar, and these two operations satisfy certain properties (which we take as axioms that define vectors). Below, **a**, **b**, and **c** are arbitrary vectors, and α and β are arbitrary scalars.

(+) Axioms of addition:

- $(+_1)$ **a** + **b** = **b** + **a** (commutativity of addition);
- $(+_2)$ $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$ (associativity of addition);
- $(+_3)$ there exists a vector **0** (called a *zero vector*) such that $\mathbf{a} + \mathbf{0} = \mathbf{a}$ for any vector \mathbf{a} ;
- $(+_4)$ for any vector **a** there exists a vector $\widetilde{\mathbf{a}}$ such that $\mathbf{a} + \widetilde{\mathbf{a}} = \mathbf{0}$.
- (\cdot) Axioms of multiplication of a vector and a scalar:
 - $(\cdot_1) \ (\alpha\beta)\mathbf{a} = \alpha(\beta\mathbf{a});$
 - $(\cdot_2) \ 1 \mathbf{a} = \mathbf{a}.$
- $(+\cdot)$ Axioms connecting the addition of vectors with the multiplication of a vector and a scalar ("distributive laws"):

 $(+\cdot_1) (\alpha + \beta)\mathbf{a} = \alpha \mathbf{a} + \beta \mathbf{a};$

 $(+\cdot_2) \ \alpha(\mathbf{a}+\beta) = \alpha \mathbf{a} + \alpha \mathbf{b}.$

In class we proved the following result (the symbol \blacksquare indicates the end of the proof).

Theorem A. The zero vector is unique.

Proof. Assume that there are two zero vectors, $\mathbf{0}$ and $\mathbf{0}'$. Then we have

$$\mathbf{0} \stackrel{(1)}{=} \mathbf{0} + \mathbf{0}' \stackrel{(2)}{=} \mathbf{0}' + \mathbf{0} \stackrel{(3)}{=} \mathbf{0}'$$

Here we used the following facts (the numbering below corresponds to the numbering of the three equalities in the chain above):

- the equality (1) used the fact that $\mathbf{0}'$ is a zero vector, therefore $\mathbf{a} + \mathbf{0}' = \mathbf{a}$ for any vector \mathbf{a} , in particular, for $\mathbf{a} = \mathbf{0}$; in other words, we used Axiom (+₃) with $\mathbf{a} = \mathbf{0}$;
- the equality (2) used Axiom $(+_1)$ (the commutativity of addition);
- the equality (3) used the fact that 0 is a zero vector, therefore a + 0 = a for any vector a, in particular, for a = 0'; in other words, we used Axiom (+₃) with a = 0'.

Problem 1. Complete the proof of the following theorem.

Theorem B. Any vector **a** has only one "opposite" vector $\tilde{\mathbf{a}}$ (which satisfies $\mathbf{a} + \tilde{\mathbf{a}} = \mathbf{0}$). **Proof.** Assume that there are two vectors, $\tilde{\mathbf{a}}$ and $\tilde{\mathbf{a}}'$, that are opposite to \mathbf{a} , i.e., such that $\mathbf{a} + \tilde{\mathbf{a}} = \mathbf{0}$ and $\mathbf{a} + \tilde{\mathbf{a}}' = \mathbf{0}$. Then the following equalities hold:

$$\widetilde{\mathbf{a}} \stackrel{(1)}{=} \widetilde{\mathbf{a}} + \mathbf{0} \stackrel{(2)}{=} \widetilde{\mathbf{a}} + (\mathbf{a} + \widetilde{\mathbf{a}}') \stackrel{(3)}{=} (\widetilde{\mathbf{a}} + \mathbf{a}) + \widetilde{\mathbf{a}}' \stackrel{(4)}{=} \mathbf{0} + \widetilde{\mathbf{a}}' \stackrel{(5)}{=} \widetilde{\mathbf{a}}' + \mathbf{0} \stackrel{(6)}{=} \widetilde{\mathbf{a}}'$$

The reasons why these equalities hold are the following:

- the equality (1) used Axiom $(+_3)$ (existence of a zero vector);
- the equality (2) used ...;
- the equality (3) used ...;
- the equality (4) used ...;
- the equality (5) used ...;
- the equality (6) used

Food for thought.¹ Think about the proofs of the following theorems.

Theorem C. The product of 0 and any vector \mathbf{a} is equal to the zero vector: $0\mathbf{a} = \mathbf{0}$.

Proof. From Theorem A we know that the zero vector is unique. Therefore, if we know that for some vector \mathbf{b} we have $\mathbf{a} + \mathbf{b} = \mathbf{a}$ for any vector \mathbf{a} , then $\mathbf{b} = \mathbf{0}$. Thus, if we prove that $\mathbf{a} + 0\mathbf{a} = \mathbf{a}$ for an arbitrary vector \mathbf{a} , this would imply that $0\mathbf{a} = \mathbf{0}$. Indeed, we have

$$\mathbf{a} + 0\mathbf{a} \stackrel{(1)}{=} 1\mathbf{a} + 0\mathbf{a} \stackrel{(2)}{=} (1+0)\mathbf{a} \stackrel{(3)}{=} 1\mathbf{a} \stackrel{(4)}{=} \mathbf{a}$$

where the equality (1) holds because...

Theorem D. For any vector \mathbf{a} , its opposite, $\tilde{\mathbf{a}}$, is equal to $(-1)\mathbf{a}$.

Proof. According to Theorem B, for any \mathbf{a} , the vector $\tilde{\mathbf{a}}$ is unique. Therefore, if we prove that $\mathbf{a} + (-1)\mathbf{a} = \mathbf{0}$, this will imply that $\tilde{\mathbf{a}} = (-1)\mathbf{a}$. The proof follows from the following chain of equalities: ...

Theorem E. For any vector \mathbf{a} we have $\mathbf{a} + \mathbf{a} = 2\mathbf{a}$.

Proof. Do it yourself.

¹ "Food for thought" problems are interesting problems you may try to solve, but are not to be turned in.