
MATH 3413 Problems assigned on 4/22/14

Problem 1. Consider the problem about the stationary temperature distribution in the
rectangle x ∈ [0, a], y ∈ [0, b] (which can be symbolically written as (x, y) ∈ [0, a]× [0, b]) if
there are no sources of heat in the rectangle (hence the temperature u(x, y) satisfies Laplace’s
equation ∆u = 0), and the temperature at the sides of the rectangle is maintained as follows:

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 5 sin

7πx

a
for x ∈ [0, a] .

(a) Solve the boundary value problem

∆u = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = 0 , u(x, b) = 5 sin
7πx

a
for x ∈ [0, a] .

(b) Solve the boundary value problem

∆u = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 0 for x ∈ [0, a] .

Hint: Let Yn(y) stands for the functions in the expansion

u(x, y) =
∞∑
n=1

Yn(y)Xn(x) ,

where because of the homogeneous boundary conditions at x = 0 and x = a the
functions Xn(x) are given by Xn(x) = sin nπx

a
. Then the general solution of the ODE

for Yn(y) is

Yn(y) = Cn cosh
nπy

a
+Dn sinh

nπy

a
.

Show that the homogeneous boundary condition at y = b implies that

Yn(y) = En

(
sinh

nπb

a
cosh

nπy

a
− cosh

nπb

a
sinh

nπy

a

)
= En sinh

nπ(b− y)

a

(where En are constants arbitrary at the moment); here we have used the fact that
hyperbolic sine satisfies

sinh(α± β) = sinhα cosh β ± coshα sinh β .
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Now impose the remaining boundary condition to find the constants En (of which only
one will be non-zero).

(c) Since the equation is linear and homogeneous (i.e., with a zero right-hand side), the
principle of superposition holds similarly to the case of ordinary differential equations.
Using this fact, write down the solution of the boundary value problem

∆u = 0 , (x, y) ∈ [0, a]× [0, b]

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0, b]

u(x, 0) = sin
3πx

a
, u(x, b) = 5 sin

7πx

a
for x ∈ [0, a] .

Problem 2. Solve the boundary value problem

∆u(x, y) = 0

u(0, y) = 0 , u(a, y) = 0 for y ∈ [0,∞)

u(x, 0) = sin
3πx

a
for x ∈ [0, a]

in the semi-infinite strip x ∈ [0, a], y ∈ [0,∞). From physical point of view it is quite clear
that we have to also impose the condition limy→∞ u(x, y) = 0.

Hint: When you are trying to find the functions Yn(y), it will be more convenient to write
them as superposition of exponents rather than as superposition of hyperbolic functions
(because e−(positive constant) y tends to 0 while e(positive constant) y tends to infinity as y → ∞).
Reading Example 2 from Section 9.7 of the book (on pages 648, 649) will be VERY useful!

Problem 3. Solve the boundary value problem

∆u(x, y) = 0 , (x, y) ∈ [0, a]× [0, b]

ux(0, y) = 0 , ux(a, y) = 0 for y ∈ [0,∞)

u(x, 0) = 0 , u(x, b) = 7 + cos
3πx

a
for x ∈ [0, a] .

Note that the boundary conditions on the walls x = 0 and x = a are of Neumann type,
which tells you that you have to look for an expansion of u(x, y) in the form

u(x, y) = Y0(y)X0(x) +
∞∑
n=1

Yn(y)Xn(y) ,

where X0(x) = 1, Xn(x) = cos nπx
a

(n = 1, 2, . . .). The functions Yn(y) for n = 1, 2, . . . are
the same as in the Hint to Problem 1(b) above. How about the function Y0(y)?
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