MATH 3413

Problems assigned on 4/22/14

Problem 1. Consider the problem about the stationary temperature distribution in the rectangle $x \in[0, a], y \in[0, b]$ (which can be symbolically written as $(x, y) \in[0, a] \times[0, b]$) if there are no sources of heat in the rectangle (hence the temperature $u(x, y)$ satisfies Laplace's equation $\Delta u=0$), and the temperature at the sides of the rectangle is maintained as follows:

$$
\begin{array}{ll}
u(0, y)=0, \quad u(a, y)=0 \quad \text { for } y \in[0, b] \\
u(x, 0)=\sin \frac{3 \pi x}{a}, \quad u(x, b)=5 \sin \frac{7 \pi x}{a} \quad \text { for } x \in[0, a]
\end{array}
$$

(a) Solve the boundary value problem

$$
\begin{aligned}
& \Delta u=0, \quad(x, y) \in[0, a] \times[0, b] \\
& u(0, y)=0, \quad u(a, y)=0 \quad \text { for } y \in[0, b] \\
& u(x, 0)=0, \quad u(x, b)=5 \sin \frac{7 \pi x}{a} \quad \text { for } x \in[0, a] .
\end{aligned}
$$

(b) Solve the boundary value problem

$$
\begin{aligned}
& \Delta u=0, \quad(x, y) \in[0, a] \times[0, b] \\
& u(0, y)=0, \quad u(a, y)=0 \quad \text { for } y \in[0, b] \\
& u(x, 0)=\sin \frac{3 \pi x}{a}, \quad u(x, b)=0 \quad \text { for } x \in[0, a]
\end{aligned}
$$

Hint: Let $Y_{n}(y)$ stands for the functions in the expansion

$$
u(x, y)=\sum_{n=1}^{\infty} Y_{n}(y) X_{n}(x)
$$

where because of the homogeneous boundary conditions at $x=0$ and $x=a$ the functions $X_{n}(x)$ are given by $X_{n}(x)=\sin \frac{n \pi x}{a}$. Then the general solution of the ODE for $Y_{n}(y)$ is

$$
Y_{n}(y)=C_{n} \cosh \frac{n \pi y}{a}+D_{n} \sinh \frac{n \pi y}{a}
$$

Show that the homogeneous boundary condition at $y=b$ implies that

$$
\begin{aligned}
Y_{n}(y) & =E_{n}\left(\sinh \frac{n \pi b}{a} \cosh \frac{n \pi y}{a}-\cosh \frac{n \pi b}{a} \sinh \frac{n \pi y}{a}\right) \\
& =E_{n} \sinh \frac{n \pi(b-y)}{a}
\end{aligned}
$$

(where E_{n} are constants arbitrary at the moment); here we have used the fact that hyperbolic sine satisfies

$$
\sinh (\alpha \pm \beta)=\sinh \alpha \cosh \beta \pm \cosh \alpha \sinh \beta
$$

Now impose the remaining boundary condition to find the constants E_{n} (of which only one will be non-zero).
(c) Since the equation is linear and homogeneous (i.e., with a zero right-hand side), the principle of superposition holds similarly to the case of ordinary differential equations. Using this fact, write down the solution of the boundary value problem

$$
\begin{aligned}
& \Delta u=0, \quad(x, y) \in[0, a] \times[0, b] \\
& u(0, y)=0, \quad u(a, y)=0 \quad \text { for } y \in[0, b] \\
& u(x, 0)=\sin \frac{3 \pi x}{a}, \quad u(x, b)=5 \sin \frac{7 \pi x}{a} \quad \text { for } x \in[0, a] .
\end{aligned}
$$

Problem 2. Solve the boundary value problem

$$
\begin{aligned}
& \Delta u(x, y)=0 \\
& u(0, y)=0, \quad u(a, y)=0 \quad \text { for } y \in[0, \infty) \\
& u(x, 0)=\sin \frac{3 \pi x}{a} \quad \text { for } x \in[0, a]
\end{aligned}
$$

in the semi-infinite strip $x \in[0, a], y \in[0, \infty)$. From physical point of view it is quite clear that we have to also impose the condition $\lim _{y \rightarrow \infty} u(x, y)=0$.
Hint: When you are trying to find the functions $Y_{n}(y)$, it will be more convenient to write them as superposition of exponents rather than as superposition of hyperbolic functions (because $e^{- \text {(positive constant) } y}$ tends to 0 while $e^{\text {(positive constant) } y}$ tends to infinity as $y \rightarrow \infty$). Reading Example 2 from Section 9.7 of the book (on pages 648, 649) will be VERY useful!

Problem 3. Solve the boundary value problem

$$
\begin{aligned}
& \Delta u(x, y)=0, \quad(x, y) \in[0, a] \times[0, b] \\
& u_{x}(0, y)=0, \quad u_{x}(a, y)=0 \quad \text { for } y \in[0, \infty) \\
& u(x, 0)=0, \quad u(x, b)=7+\cos \frac{3 \pi x}{a} \quad \text { for } x \in[0, a] .
\end{aligned}
$$

Note that the boundary conditions on the walls $x=0$ and $x=a$ are of Neumann type, which tells you that you have to look for an expansion of $u(x, y)$ in the form

$$
u(x, y)=Y_{0}(y) X_{0}(x)+\sum_{n=1}^{\infty} Y_{n}(y) X_{n}(y)
$$

where $X_{0}(x)=1, X_{n}(x)=\cos \frac{n \pi x}{a}(n=1,2, \ldots)$. The functions $Y_{n}(y)$ for $n=1,2, \ldots$ are the same as in the Hint to Problem 1(b) above. How about the function $Y_{0}(y)$?

