MATH 3413 Problems assigned on 4/15/14

Problem 1. In this problem you can use without deriving it that the solution of the wave equation $u_{tt}(x,t) - c^2 u_{xx}(x,t) = 0$, $x \in [0,L]$, $t \ge 0$, with homogeneous Dirichlet BCs u(0,t) = 0, u(L,t) = 0 has the form

$$u(x,t) = \sum_{n=1}^{\infty} T_n(t) \sin \frac{n\pi x}{L}$$

The functions $T_n(t)$ satisfy the ODEs

$$T''_n(t) + \left(\frac{n\pi c}{L}\right)^2 T_n(t) = 0 , \qquad t \ge 0 ,$$

so their general form is

$$T_n(t) = A_n \cos \frac{n\pi ct}{L} + B_n \sin \frac{n\pi ct}{L}$$
.

The constants A_n and B_n can be found from the initial conditions, u(x,0) = g(x) (initial position of the spring) and $u_t(x,0) = h(x)$ (initial velocity of the spring). Solve the BVP

$$u_{tt} - 9u_{xx} = 0 , \qquad x \in [0, \pi] , \quad t \ge 0 ,$$

$$u(0, t) = 0 , \qquad u(\pi, t) = 0 ,$$

$$u(x, 0) = 4 \sin 2x , \qquad u_t(x, 0) = 15 \sin 5x$$

Problem 2. As you know, the solution of the wave equation $u_{tt}(x,t) - c^2 u_{xx}(x,t) = 0$ for $x \in \mathbb{R}$ can always be represented in the form

$$u(x,t) = \phi(x-ct) + \psi(x+ct) ,$$

for some functions $\phi(y)$ and $\psi(y)$ of one variable (this is proved in the Food for Thought Problem below). This result holds for *any* solution of the wave equation, even if the spatial variable x belongs only to a finite-length interval, e.g., $x \in [0, L]$ like in Problem 1. Rewrite your result for the function u(x, t) from Problem 1 in the form $u(x, t) = \phi(x - ct) + \psi(x + ct)$. Write explicitly what the functions $\phi(y)$ and $\psi(y)$ are in this case.

Hint: You have to use some trigonometric identities, which may be easily derived from the following facts:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta ,$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta .$$

Problem 3. Consider the following problem for the wave equation with air resistance term, with homogeneous Dirichlet BCs on the spatial interval $x \in [0, \pi]$:

$$\begin{aligned} u_{xx} - 10u_t - u_{tt} &= 0 , & x \in [0, \pi] , \quad t \ge 0 , \\ u(0, t) &= 0 , & u(\pi, t) = 0 , & t \ge 0 , \\ u(x, 0) &= -8 \sin 3x + 12 \sin 13x , & u_t(x, 0) = 0 , & x \in [0, \pi] . \end{aligned}$$

Physically, this problem corresponds to a spring vibrating in air with resistance proportional to the velocity (i.e., to the time derivative $u_t(x,t)$). The coefficient multiplying $u_t(x,t)$ is proportional to the air resistance coefficient.

Because of the homogeneous Dirichlet BCs, it is clear that we should look for an expansion of the unknown function u(x,t) of the form

$$u(x,t) = \sum_{n=1}^{\infty} T_n(t) \sin \frac{n\pi x}{L} = \sum_{n=1}^{\infty} T_n(t) \sin nx$$
(1)

(here $L = \pi$ is the length of the string).

(a) Plug the expansion (1) in the PDE to show that the unknown functions $T_n(t)$ must satisfy the ODEs

$$T_n''(t) + 10 T_n'(t) + n^2 T_n(t) = 0 .$$
⁽²⁾

- (b) The initial conditions for the functions $T_n(t)$ come from the initial conditions for u(x,t). Plug the expansion (1) into the initial conditions for u(x,t) to show that $T_n(0)$ and $T'_n(0)$ are zero for all n except for n = 3 and n = 13. What are the initial conditions $T_3(0)$ and $T'_3(0)$ for $T_3(t)$, and the initial conditions $T_{13}(0)$ and $T'_{13}(0)$ for $T_{13}(t)$?
- (c) Since the ODEs (2) are homogeneous (i.e., have zero right-hand sides), the solutions for all functions $T_n(t)$ with n not equal to 3 or 13 will be identically equal to zero. Solve the initial-value problem for the function $T_3(t)$.
- (d) Solve the initial-value problem for the function $T_{13}(t)$.
- (e) Write down the solution,

$$u(x,t) = T_3(t)\sin 3x + T_{13}(t)\sin 13x ,$$

with the functions $T_3(t)$ and $T_{13}(t)$ found in parts (c) and (d).

- (f) From the physical interpretation of the problem, what would you expect the asymptotic position of the string to be. No calculation is needed here, only a couple of sentences of explanation.
- (g) Does the solution found in part (e) behave as you predicted on physical grounds in part (f)?

Food for Thought Problem [Not to be turned in!]

Consider the wave equation for the function u(x,t) of one spatial (x) and one temporal (t) variables:

$$u_{tt}(x,t) - c^2 u_{xx}(x,t) = 0$$
, $x \in \mathbb{R}, t \in [0,\infty)$,

where c is the speed of the wave (measured in meters per second).

(a) Let $\sigma = \Sigma(x, t)$ and $\gamma = \Gamma(x, t)$ be new variables defined as

$$\sigma = \Sigma(x,t) := x - ct, \quad \gamma = \Gamma(x,t) := x + ct.$$

Let $\widetilde{u}(\sigma, \gamma)$ be a function of two variables defined as

$$u(x,t) := \widetilde{u}(\Sigma(x,t),\Gamma(x,t)) = \widetilde{u}(\sigma,\gamma)|_{\sigma=\Sigma(x,t),\ \gamma=\Gamma(x,t)}$$

Using the standard jargon, $\tilde{u}(\sigma, \gamma)$ is the function u(x, t) expressed in the new variables σ and γ . Using the chain rule, we can express the partial derivatives of u(x, y) through the partial derivatives of $\tilde{u}(\sigma, \gamma)$ as follows (subscripts stand for partial derivatives):

$$u_{t} = \widetilde{u}_{\sigma}\Sigma_{t} + \widetilde{u}_{\gamma}\Gamma_{t} = -c\widetilde{u}_{\sigma} + c\widetilde{u}_{\gamma}$$

$$u_{tt} = (-c\widetilde{u}_{\sigma} + c\widetilde{u}_{\gamma})_{t} = -c(\widetilde{u}_{\sigma\sigma}\Sigma_{t} + \widetilde{u}_{\sigma\gamma}\Gamma_{t}) + c(\widetilde{u}_{\gamma\sigma}\Sigma_{t} + \widetilde{u}_{\gamma\gamma}\Gamma_{t}) = c^{2}(\widetilde{u}_{\sigma\sigma} - 2\widetilde{u}_{\sigma\gamma} + \widetilde{u}_{\gamma\gamma})$$

$$u_{x} = \widetilde{u}_{\sigma}\Sigma_{x} + \widetilde{u}_{\gamma}\Gamma_{x} = \widetilde{u}_{\sigma} + \widetilde{u}_{\gamma}$$

$$u_{xx} = (\widetilde{u}_{\sigma} + \widetilde{u}_{\gamma})_{x} = \widetilde{u}_{\sigma\sigma}\Sigma_{x} + \widetilde{u}_{\sigma\gamma}\Gamma_{x} + \widetilde{u}_{\gamma\sigma}\Sigma_{x} + \widetilde{u}_{\gamma\gamma}\Gamma_{x} = \widetilde{u}_{\sigma\sigma} + 2\widetilde{u}_{\sigma\gamma} + \widetilde{u}_{\gamma\gamma}$$

Plugging all these derivatives in the wave equation, we obtain

$$c^2 \left(\widetilde{u}_{\sigma\sigma} - 2\widetilde{u}_{\sigma\gamma} + \widetilde{u}_{\gamma\gamma} \right) = c^2 \left(\widetilde{u}_{\sigma\sigma} + 2\widetilde{u}_{\sigma\gamma} + \widetilde{u}_{\gamma\gamma} \right) \;,$$

or, after elementary cancellations,

$$\widetilde{u}_{\sigma\gamma}(\sigma,\gamma)=0$$
.

The only thing that you have to do in this part of the problem is to show that the general solution of this PDE is

$$\widetilde{u}(\sigma,\gamma) = \phi(\sigma) + \psi(\gamma) ,$$

where ϕ and ψ are arbitrary functions of one variable.

(b) Go to the original variables to show that the general solution of the wave equation $u_{tt} - c^2 u_{xx} = 0$ is

$$u(x,t) = \phi(x - ct) + \psi(x + ct) .$$

(c) Now consider the initial value problem consisting of the wave equation in part (a) and the initial conditions

$$u(x,0) = g(x)$$
, $u_t(x,0) = h(x)$

(where the subscript t stands for differentiation with the respect to t). In physical terms, u(x, 0) is the initial position, and $u_t(x, 0)$ is the initial velocity. Show that the functions ϕ and ψ from parts (a) and (b) are related to g and h as follows:

$$\phi(x) + \psi(x) = g(x)$$

 $-\phi'(x) + \psi'(x) = \frac{1}{c}h(x)$.

(d) One can integrate the second equation from the system in (c) and solve it for the functions f and g, obtaining

$$\phi(x) + \psi(x) = g(x)$$

$$-\phi(x) + \psi(x) = \frac{1}{c} \int_0^x h(s) \, \mathrm{d}s + A ,$$

where A is an arbitrary constant. Solve this system to show that

$$\phi(x) = \frac{1}{2}g(x) - \frac{1}{2c}\int_0^x h(s) \,\mathrm{d}s - \frac{A}{2}$$

$$\psi(x) = \frac{1}{2}g(x) + \frac{1}{2c}\int_0^x h(s) \,\mathrm{d}s + \frac{A}{2}.$$

(e) Use your result in (d) to show that the solution of the initial value problem

$$u_{tt}(x,t) - c^2 u_{xx}(x,t) = 0$$
, $x \in \mathbb{R}$, $t \in [0,\infty)$
 $u(x,0) = g(x)$, $u_t(x,0) = h(x)$, for $x \in \mathbb{R}$

is

$$u(x,t) = \frac{1}{2} \left[g(x - ct) + g(x + ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} h(s) \, \mathrm{d}s \; .$$

Congratulations! You have derived the so-called *d'Alembert formula* for the solution of the wave equation in one spatial dimension on the whole real line!

(f) Use d'Alembert formula to solve the initial-value problem

$$u_t t(x,t) - c^2 u_{xx}(x,t) = 0 , \qquad x \in \mathbb{R} , \quad t \in [0,\infty)$$
$$u(x,0) = 0 , \qquad u_t(x,0) = x e^{-x^2} , \qquad \text{for } x \in \mathbb{R} .$$