MATH 3413

 Problems assigned on 4/10/14Problem 1. In all parts of the problem below, you can use without deriving the following solutions of the heat equation $u_{t}(x, t)=\alpha^{2} u_{x x}(x, t), x \in[0, L], t \geq 0$, with appropriate boundary conditions; the first expression is for zero temperature at both boundaries (homogeneous Dirichlet BCs), and the second is for zero heat flux at both boundaries (homogeneous Neumann BCs):

$$
\begin{aligned}
& u(x, t)=\sum_{n=1}^{\infty} b_{n} \exp \left\{-\left(\frac{n \pi \alpha}{L}\right)^{2} t\right\} \sin \frac{n \pi x}{L} \\
& u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \exp \left\{-\left(\frac{n \pi \alpha}{L}\right)^{2} t\right\} \cos \frac{n \pi x}{L}
\end{aligned}
$$

(a) Solve the Dirichlet BVP below, find the asymptotic temperature, $u_{\infty}(x):=\lim _{t \rightarrow \infty} u(x, t)$, and explain why the expression you obtained for $u_{\infty}(x)$ is physically obvious.

$$
\begin{aligned}
& u_{t}=9 u_{x x}, \quad x \in[0, \pi], \quad t \geq 0 \\
& u(0, t)=0, \quad u(\pi, t)=0 \\
& u(x, 0)=4 \sin 2 x+7 \sin 5 x
\end{aligned}
$$

(b) Derive and use a trigonometric relation to solve the following Dirichlet BVP:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad x \in[0, \pi], \quad t \geq 0 \\
& u(0, t)=0, \quad u(\pi, t)=0 \\
& u(x, 0)=4 \sin 4 x \cos 2 x
\end{aligned}
$$

Hint: By using that

$$
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta
$$

one can derive the relation

$$
\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]
$$

which is useful in finding integrals of the form $\int \sin a t \cos b t \mathrm{~d} t$.
(c) Solve the Neumann BVP below, find the asymptotic temperature, $u_{\infty}(x):=\lim _{t \rightarrow \infty} u(x, t)$, and explain why the expression you obtained for $u_{\infty}(x)$ is physically obvious.

$$
\begin{aligned}
& u_{t}=9 u_{x x}, \quad x \in[0,5], \quad t \geq 0 \\
& u_{x}(0, t)=0, \quad u_{x}(5, t)=0 \\
& u(x, 0)=7+6 \cos 2 \pi x
\end{aligned}
$$

(d) Solve the Neumann BVP below. You may use the results of Problem 4 of Section 9.3 without deriving them.

$$
\begin{aligned}
& u_{t}=9 u_{x x}, \quad x \in[0,2], \quad t \geq 0, \\
& u_{x}(0, t)=0, \quad u_{x}(2, t)=0, \\
& u(x, 0)=f(x):= \begin{cases}x & \text { for } x \in[0,1] \\
2-x & \text { for } x \in[1,2] .\end{cases}
\end{aligned}
$$

Problem 2. Consider the following BVP with non-homogeneous Dirichlet BCs:

$$
\begin{aligned}
& u_{t}=9 u_{x x}, \quad x \in[0, \pi], \quad t \geq 0, \\
& u(0, t)=0, \quad u(\pi, t)=5, \\
& u(x, 0)=0 .
\end{aligned}
$$

(a) Set $u(x, t)=\ell(x)+v(x, t)$, where $\ell(x)$ is a linear function of x that satisfies the conditions $\ell(0)=0$ and $\ell(\pi)=5$ (compare these with the boundary conditions that the function u satisfies). Clearly, there is only one such linear function ℓ, namely, $\ell(x)=\frac{5}{\pi} x$. Derive the BVP satisfied by the function $v(x, t)-$ you will obtain a BVP with homogeneous (i.e., zero) Dirichlet BCs. Be careful - the PDE for v may be different than the PDE for u, and the IC for v will certainly be different from the one for u.
(b) Solve the BVP for v derived in part (a). You again may use the expressions for the solutions of BVPs for the heat equation given in Problem 1 (without deriving them). Also, you may use the fact that the sine Fourier series of the function $f(x)=x$ for $x \in[0, L]$ is

$$
\frac{2 L}{\pi}\left(\sin \frac{\pi x}{L}-\frac{1}{2} \sin \frac{2 \pi x}{L}+\frac{1}{3} \sin \frac{3 \pi x}{L}-\frac{1}{4} \sin \frac{4 \pi x}{L}+\cdots\right)=\frac{2 L}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin \frac{n \pi x}{L}
$$

(this expression is derived in Example 1 on pages 600-601 of the book).
(c) Having solved part (b), write down the solution $u(x, t)$ of the original BVP.

Problem 3. In this problem you will make some predictions about the asymptotic behavior (i.e., when $t \rightarrow \infty$) of the solution $u(x, t)$ of the boundary value problem

$$
\begin{aligned}
& u_{t}=\alpha^{2} u_{x x}+\psi(x), \quad x \in[0, L], \quad t \in[0, \infty) \\
& u(0, t)=0, \quad u(L, t)=0 \quad \text { for } t \in[0, \infty) \\
& u(x, 0)=f(x) \quad \text { for } x \in[0, L] .
\end{aligned}
$$

Physically, this problem describes the temperature distribution in a rod of length L with insulated side walls and ends at $x=0$ and $x=L$ kept at zero temperature. The initial temperature in the rod is given by the function $f(x)$ and, more interestingly, there are sources of heat in the rod whose power is given by the function $\psi(x)$ in the PDE.
One can solve this problem completely (which you will do in Problem 4 below), but before doing this, try to obtain some information about the behavior of the solution $u(x, t)$ at large times. Since the temperatures at the ends of the rod do not depend on time, and the intensity of the sources of heat is time-independent as well, it is clear that after some initial period of more or less rapid changes, the solution $u(x, t)$ will tend to some time-independent function. Let us call this function $u_{\infty}(x)$:

$$
u_{\infty}(x):=\lim _{t \rightarrow \infty} u(x, t) .
$$

Since this function does not depend on t, it will be a solution of some ordinary differential equation!
(a) From the PDE given in this problem, obtain an ODE for the function $u_{\infty}(x)$.
(b) From the BCs for $u(x, t)$, obtain BCs for $u_{\infty}(x)$. Note that the initial condition for $u(x, t)$ will not matter in the limit $t \rightarrow \infty$.
(c) Solve the boundary value problem for the asymptotic temperature distribution $u_{\infty}(t)$ in the case $\alpha=1, L=\pi, \psi(x)=2 \sin 5 x, f(x)=\sin 3 x$.
(d) Sketch the function $u_{\infty}(x)$. Find the highest and the lowest temperatures in the rod after very long time.

Problem 4. Now you will find the solution of the boundary value problem

$$
\begin{aligned}
& u_{t}=\alpha^{2} u_{x x}+\psi(x), \quad x \in[0, L], \quad t \in[0, \infty) \\
& u(0, t)=0, \quad u(L, t)=0 \quad \text { for } t \in[0, \infty) \\
& u(x, 0)=f(x) \quad \text { for } x \in[0, L] .
\end{aligned}
$$

This is the same as in Problem 3, but there you only found the asymptotic behavior of $u(x, t)$ as $t \rightarrow \infty$, while here you will solve the problem completely.
(a) Because of the boundary conditions, look for a solution of the problem of the form

$$
u(x, t)=\sum_{n=1}^{\infty} T_{n}(t) \sin \frac{n \pi x}{L}
$$

Assume that the function $\psi(x)$ in the right-hand side of the PDE can be expanded in a sine Fourier series as

$$
\psi(x)=\sum_{n=1}^{\infty} \psi_{n} \sin \frac{n \pi x}{L}
$$

where the coefficients ψ_{n} are given by the standard formula, $\psi_{n}=\frac{2}{L} \int_{0}^{L} \psi(x) \sin \frac{n \pi x}{L} \mathrm{~d} x$.
Plug these expansions in the partial differential equation to show that the functions $T_{n}(t)$ satisfy the non-homogeneous ODEs

$$
T_{n}^{\prime}(t)+\left(\frac{\alpha n \pi}{L}\right)^{2} T_{n}(t)=\psi_{n}
$$

(b) Assume that the sine Fourier series of the the initial condition $f(x)$ is

$$
f(x)=\sum_{n=1}^{\infty} f_{n} \sin \frac{n \pi x}{L} .
$$

Plug the expansion of $u(x, t)$ into the initial condition to show that the initial conditions for the functions $T_{n}(t)$ are $T_{n}(0)=f_{n}$.
(c) Solve the initial value problems for the functions $T_{n}(t)$ derived in parts (a) and (b).
(d) Using your results from parts (a) and (c), write down the solution $u(x, t)$ of the original boundary value problem.
(e) Write down the solution $u(x, t)$ of the original boundary value problem in the case $\alpha=1, L=\pi, \psi(x)=2 \sin 5 x, f(x)=\sin 3 x$ (the same as in Problem 4(c) above).
(f) Check if the asymptotic (i.e., as $t \rightarrow \infty$) behavior of the solution $u(x, t)$ obtained in part (e) is the same as the function $u_{\infty}(x)$ obtained in Problem 4(d).

