
MATH 3413 Problems assigned on 4/10/14

Problem 1. In all parts of the problem below, you can use without deriving the following
solutions of the heat equation ut(x, t) = α2uxx(x, t), x ∈ [0, L], t ≥ 0, with appropriate
boundary conditions; the first expression is for zero temperature at both boundaries (homo-
geneous Dirichlet BCs), and the second is for zero heat flux at both boundaries (homogeneous
Neumann BCs):

u(x, t) =
∞∑
n=1

bn exp

{
−
(nπα
L

)2
t

}
sin

nπx

L
,

u(x, t) =
a0
2

+
∞∑
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an exp

{
−
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L

)2
t

}
cos

nπx

L
.

(a) Solve the Dirichlet BVP below, find the asymptotic temperature, u∞(x) := lim
t→∞

u(x, t),

and explain why the expression you obtained for u∞(x) is physically obvious.

ut = 9uxx , x ∈ [0, π] , t ≥ 0 ,

u(0, t) = 0 , u(π, t) = 0 ,

u(x, 0) = 4 sin 2x+ 7 sin 5x .

(b) Derive and use a trigonometric relation to solve the following Dirichlet BVP:

ut = uxx , x ∈ [0, π] , t ≥ 0 ,

u(0, t) = 0 , u(π, t) = 0 ,

u(x, 0) = 4 sin 4x cos 2x .

Hint: By using that

sin(α± β) = sinα cos β ± cosα sin β ,

one can derive the relation

sinα cos β =
1

2
[sin(α + β) + sin(α− β)] ,

which is useful in finding integrals of the form

∫
sin at cos bt dt.

(c) Solve the Neumann BVP below, find the asymptotic temperature, u∞(x) := lim
t→∞

u(x, t),

and explain why the expression you obtained for u∞(x) is physically obvious.

ut = 9uxx , x ∈ [0, 5] , t ≥ 0 ,

ux(0, t) = 0 , ux(5, t) = 0 ,

u(x, 0) = 7 + 6 cos 2πx .
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(d) Solve the Neumann BVP below. You may use the results of Problem 4 of Section 9.3
without deriving them.

ut = 9uxx , x ∈ [0, 2] , t ≥ 0 ,

ux(0, t) = 0 , ux(2, t) = 0 ,

u(x, 0) = f(x) :=

{
x for x ∈ [0, 1] ,

2− x for x ∈ [1, 2] .

Problem 2. Consider the following BVP with non-homogeneous Dirichlet BCs:

ut = 9uxx , x ∈ [0, π] , t ≥ 0 ,

u(0, t) = 0 , u(π, t) = 5 ,

u(x, 0) = 0 .

(a) Set u(x, t) = `(x) + v(x, t), where `(x) is a linear function of x that satisfies the
conditions `(0) = 0 and `(π) = 5 (compare these with the boundary conditions that
the function u satisfies). Clearly, there is only one such linear function `, namely,
`(x) = 5

π
x. Derive the BVP satisfied by the function v(x, t) – you will obtain a BVP

with homogeneous (i.e., zero) Dirichlet BCs. Be careful – the PDE for v may be
different than the PDE for u, and the IC for v will certainly be different from the one
for u.

(b) Solve the BVP for v derived in part (a). You again may use the expressions for the
solutions of BVPs for the heat equation given in Problem 1 (without deriving them).
Also, you may use the fact that the sine Fourier series of the function f(x) = x for
x ∈ [0, L] is

2L

π

(
sin

πx

L
− 1

2
sin

2πx

L
+

1

3
sin

3πx

L
− 1

4
sin

4πx

L
+ · · ·

)
=

2L

π

∞∑
n=1

(−1)n−1

n
sin

nπx

L

(this expression is derived in Example 1 on pages 600–601 of the book).

(c) Having solved part (b), write down the solution u(x, t) of the original BVP.

Problem 3. In this problem you will make some predictions about the asymptotic behavior
(i.e., when t→∞) of the solution u(x, t) of the boundary value problem

ut = α2 uxx + ψ(x) , x ∈ [0, L] , t ∈ [0,∞)

u(0, t) = 0 , u(L, t) = 0 for t ∈ [0,∞)

u(x, 0) = f(x) for x ∈ [0, L] .
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Physically, this problem describes the temperature distribution in a rod of length L with
insulated side walls and ends at x = 0 and x = L kept at zero temperature. The initial
temperature in the rod is given by the function f(x) and, more interestingly, there are sources
of heat in the rod whose power is given by the function ψ(x) in the PDE.

One can solve this problem completely (which you will do in Problem 4 below), but before
doing this, try to obtain some information about the behavior of the solution u(x, t) at large
times. Since the temperatures at the ends of the rod do not depend on time, and the intensity
of the sources of heat is time-independent as well, it is clear that after some initial period of
more or less rapid changes, the solution u(x, t) will tend to some time-independent function.
Let us call this function u∞(x):

u∞(x) := lim
t→∞

u(x, t) .

Since this function does not depend on t, it will be a solution of some ordinary differential
equation!

(a) From the PDE given in this problem, obtain an ODE for the function u∞(x).

(b) From the BCs for u(x, t), obtain BCs for u∞(x). Note that the initial condition for
u(x, t) will not matter in the limit t→∞.

(c) Solve the boundary value problem for the asymptotic temperature distribution u∞(t)
in the case α = 1, L = π, ψ(x) = 2 sin 5x, f(x) = sin 3x.

(d) Sketch the function u∞(x). Find the highest and the lowest temperatures in the rod
after very long time.

Problem 4. Now you will find the solution of the boundary value problem

ut = α2 uxx + ψ(x) , x ∈ [0, L] , t ∈ [0,∞)

u(0, t) = 0 , u(L, t) = 0 for t ∈ [0,∞)

u(x, 0) = f(x) for x ∈ [0, L] .

This is the same as in Problem 3, but there you only found the asymptotic behavior of u(x, t)
as t→∞, while here you will solve the problem completely.

(a) Because of the boundary conditions, look for a solution of the problem of the form

u(x, t) =
∞∑
n=1

Tn(t) sin
nπx

L
.

Assume that the function ψ(x) in the right-hand side of the PDE can be expanded in
a sine Fourier series as

ψ(x) =
∞∑
n=1

ψn sin
nπx

L
,
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where the coefficients ψn are given by the standard formula, ψn =
2

L

∫ L

0

ψ(x) sin
nπx

L
dx.

Plug these expansions in the partial differential equation to show that the functions
Tn(t) satisfy the non-homogeneous ODEs

T ′n(t) +
(αnπ
L

)2
Tn(t) = ψn .

(b) Assume that the sine Fourier series of the the initial condition f(x) is

f(x) =
∞∑
n=1

fn sin
nπx

L
.

Plug the expansion of u(x, t) into the initial condition to show that the initial conditions
for the functions Tn(t) are Tn(0) = fn.

(c) Solve the initial value problems for the functions Tn(t) derived in parts (a) and (b).

(d) Using your results from parts (a) and (c), write down the solution u(x, t) of the original
boundary value problem.

(e) Write down the solution u(x, t) of the original boundary value problem in the case
α = 1, L = π, ψ(x) = 2 sin 5x, f(x) = sin 3x (the same as in Problem 4(c) above).

(f) Check if the asymptotic (i.e., as t → ∞) behavior of the solution u(x, t) obtained in
part (e) is the same as the function u∞(x) obtained in Problem 4(d).
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