Sec. 9.3: problems 18, 20.
Hint for Problem 9.3/18: This problem illustrates the dangers in differentiating a Fourier series termwise (i.e., term by term). Differentiate the Fourier series of t^{2} on $t \in(0,2)$ given in the problem term by term. Compare your result with the Fourier series of the function $2 t$ on $t \in(0,2)$ which can be easily obtained from your result in Problem 9.2/17. Discuss your result. Which condition from Theorem 1 on page 601 was violated?

Sec. 9.4: problem 1.
Hint: The Fourier series for $F(t)$ can be easily found from the result in Example 1 of Section 9.1 (page 585).

Additional problem 1. Using the properties of the Laplace transform, one can show that the solution of the initial value problem

$$
\begin{align*}
& x^{\prime}(t)+3 x(t)=f(t) \\
& x(0)=0 \tag{1}
\end{align*}
$$

can be written in the form

$$
\begin{equation*}
x(t)=\int_{0}^{t} f(\tau) \mathrm{e}^{3(\tau-t)} \mathrm{d} \tau \tag{2}
\end{equation*}
$$

In this problem you will check that the function $x(t)$ defined in (2) indeed satisfies the initial value problem (1). You will need to use the following formula:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\phi(t)}^{\psi(t)} F(\tau, t) \mathrm{d} \tau=F(\psi(t), t) \psi^{\prime}(t)-F(\phi(t), t) \phi^{\prime}(t)+\int_{\phi(t)}^{\psi(t)} \frac{\partial F(\tau, t)}{\partial t} \mathrm{~d} \tau \tag{3}
\end{equation*}
$$

(a) Show that $x(t)$ given by (2) satisfies the initial condition in (1).
(b) If you represent $x(t)$ from (2) in the form $\int_{\phi(t)}^{\psi(t)} F(\tau, t) \mathrm{d} \tau$, then write explicitly the functions $F(\tau, t), \phi(t)$, and $\psi(t)$.
(c) Find explicitly $F(\psi(t), t) \psi^{\prime}(t)$ and $F(\phi(t), t) \phi^{\prime}(t)$.
(d) Find explicitly $\int_{\phi(t)}^{\psi(t)} \frac{\partial F(\tau, t)}{\partial t} \mathrm{~d} \tau$.
(e) Using your results from (b), (c), and (d), prove that $x(t)$ given by (2) satisfies the differential equation in (1).

