MATH 3413

Problems assigned on 4/1/14

Sec. 9.1: problems 2, 9, 10, 11, 13.

Sec. 9.2: problems 17, 24(b).
Hint for Problem 9.2/17: You may use the integrals

$$
\int t \sin a t \mathrm{~d} t=\frac{1}{a^{2}}(\sin a t-a t \cos a t), \quad \int t \cos a t \mathrm{~d} t=\frac{1}{a^{2}}(\cos a t+a t \sin a t) .
$$

Sec. 9.3: problems 2, 17.
Hint for Problem 9.3/2: The hint for Problem 9.2/17 will be useful.

Additional problem 1. Let \mathbb{R}^{2} stand for the vector space of all two-dimensional vectors, $\mathbf{u}=\binom{u_{1}}{u_{2}}$. Let the inner product in \mathbb{R}^{2} be given by

$$
\langle\mathbf{u}, \mathbf{v}\rangle:=\sum_{i=1}^{2} \sum_{j=1}^{2} u_{i} a_{i j} v_{j}
$$

where $a_{11}=2, a_{12}=a_{21}=1, a_{22}=4$.
Let $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ be a basis in \mathbb{R}^{2}, where $\mathbf{v}^{(1)}=\binom{v_{1}^{(1)}}{v_{2}^{(1)}}=\binom{1}{-1}$, and $\mathbf{v}^{(2)}=\binom{v_{1}^{(2)}}{v_{2}^{(2)}}=\binom{3}{1}$.
(a) Check that $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ is an orthogonal basis, i.e., that the inner product of $\mathbf{v}^{(1)}$ and $\mathbf{v}^{(2)}$ is zero: $\left\langle\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\rangle=0$.
(b) Find $\left\langle\mathbf{v}^{(1)}, \mathbf{v}^{(1)}\right\rangle$ and $\left\langle\mathbf{v}^{(2)}, \mathbf{v}^{(2)}\right\rangle$.
(c) If $\mathbf{u}=\binom{9}{-1}=\alpha_{1} \mathbf{v}^{(1)}+\alpha_{2} \mathbf{v}^{(2)}$, then find the components α_{1} and α_{2} of \mathbf{u} in the basis $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ by solving the system of linear equations for them coming from

$$
\binom{u_{1}}{u_{2}}=\alpha_{1}\binom{v_{1}^{(1)}}{v_{2}^{(1)}}+\alpha_{2}\binom{v_{1}^{(2)}}{v_{2}^{(2)}} .
$$

(d) Independently of part (c), if $\mathbf{u}=\binom{9}{-1}=\alpha_{1} \mathbf{v}^{(1)}+\alpha_{2} \mathbf{v}^{(2)}$, find the components α_{1} and α_{2} by using the formula (which relies on the orthogonality of the basis $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$)

$$
\alpha_{j}=\frac{\left\langle\mathbf{u}, \mathbf{v}^{(j)}\right\rangle}{\left\langle\mathbf{v}^{(j)}, \mathbf{v}^{(j)}\right\rangle}
$$

(e) The basis $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ is orthogonal, but not orthonormal. From the basis $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}\right\}$ construct an orthonormal basis $\left\{\widetilde{\mathbf{v}}^{(1)}, \widetilde{\mathbf{v}}^{(2)}\right\}$ of the form $\widetilde{\mathbf{v}}^{(i)}=\beta_{i} \mathbf{v}^{(i)}$, where β_{i} are appropriately chosen constants.

Additional problem 2. Let f be a periodic function of period 2π which for t between $-\pi$ and π is defined as

$$
f(t)= \begin{cases}0, & -\pi<t \leq 0 \\ t, & 0<t \leq \pi\end{cases}
$$

the graph of f is sketched in Figure 1.

Figure 1: The graph of the function f.
The Fourier series of f is the following (you do not have to prove this!):

$$
\begin{gathered}
f(t)=\frac{\pi}{4}-\frac{2}{\pi}\left(\cos t+\frac{\cos 3 t}{3^{2}}+\frac{\cos 5 t}{5^{2}}+\frac{\cos 7 t}{7^{2}}+\cdots\right) \\
+\sin t-\frac{\sin 2 t}{2}+\frac{\sin 3 t}{3}-\frac{\sin 4 t}{4}+\cdots .
\end{gathered}
$$

Let the function g be a periodic function of period 2π sketched in Figure 2. Write $g(t)$ in terms of $f(t)$. Using the Fourier series of f, find the Fourier series of g.

Figure 2: The graph of the function g.

