
MATH 3413 Problems assigned on 3/27/14

Remark: The definitions of a vector space (linear space) and inner product vector space
are given at the end of this homework.

Problem 1. Recall that a basis in a vector space V is an (ordered) set of vectors {v1,v2, . . . ,vd}
such that every vector u ∈ V can be written in a unique way in the form

u = u1v1 + u2v2 + · · ·+ ukvk =
k∑

j=1

ujvj .

The numbers uj are called the components of the vector u in the basis {v1,v2, . . . ,vd}. It
can be shown that each basis of a vector space V contains the same number of vectors; the
number of vectors in a basis of V is called the dimension of V and is denoted by dimV .

As discussed in class, the set of all polynomials of degree no greater than n form a vector
space, which we denote by Vn. An element p ∈ Vn is a polynomial

p(x) = p0 + p1x+ · · ·+ pn−1x
n−1 + pnx

n . (1)

If p (defined above) and q, defined by

q(x) = q0 + q1x+ · · ·+ qn−1x
n−1 + qnx

n ,

are two polynomials from Vn, and α is a real number, the sum p+ q ∈ V2 of p and q and the
product αp ∈ V2 are defined by

(p+ q)(x) := (p0 + q0) + (p1 + q1)x+ · · ·+ (pn−1 + qn−1)x
n−1 + (pn + qn)xn ,

(αp)(x) := αp0 + αp1x+ · · ·+ αpn−1x
n−1 + αpnx

n .
(2)

If we define the polynomials ej by

ej(x) = xj , j = 0, 1, 2, . . . ,

then it is clear that the polynomials {e0, e1, · · · , en−1, en} form a basis of Vn, in which the
polynomial p ∈ Vn defined in (1) has components p0, p1, . . ., pn−1, pn. Clearly, dimVn = n+1.

(a) Find the components of the quadratic polynomial

p = p0e0 + p1e1 + p2e2 =
2∑

j=0

pjej ∈ V2 ,

that is,
p(x) = p0 + p1x+ p2x

2 , (3)

in the basis {f0, f1, f2} of V2 defined by

f0 = 1
5
e0 , f1 = 3e1 − 2e2 , f2 = e0 − 2e1 + 3e2 . (4)

Please write your calculations in detail.
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(b) Explain in a couple of sentences why your result from part (a) implies that the set of
polynomials {f0, f1, f2} defined by (4) indeed is a basis of V2.

(c) Demonstrate that the set of vectors

g0 = 5e0 , g1 = 2e0 + 3e1 − 4e2 , g2 = e0 + 3e1 − 4e2

is not a basis of V2.

Hint: You can do this by finding a vector h ∈ V2 that can be expressed as a linear
combination of the vectors g0, g1, and g2 in more than one way.

Problem 2. Seth defined a family of polynomials, which he modestly denoted by s0, s1,
s2, . . ., that satisfy the following conditions:

(i) the polynomial sk is of degree k;

(ii) the polynomials sk are monic, i.e., the coefficient in front of the term with the highest
power of x in sk (in our case, this is the coefficient of xk) is equal to 1;

(iii) the polynomials s0, s1, s2, . . ., sn form an orthogonal basis in the space of polynomials
Vn(0,∞;w(x) = e−x) (defined below).

In condition (iii) above, Vn(a, b;w(x)) stands for the linear space of polynomials of degree
no greater than n endowed with the inner product

〈p, q〉 =

∫ b

a

p(x) q(x)w(x) dx ,

where w is a non-negative function that is allowed to take value zero only at a set of isolated
points. The inner product in the vector space Vn(0,∞;w(x) = e−x) considered by Seth is,
therefore,

〈p, q〉 =

∫ ∞
0

p(x) q(x) e−x dx .

In the solution of this problem the following identity will be handy (where 0! := 1):∫ ∞
0

xk e−x dx = k! , k = 0, 1, 2, . . . .

(a) Clearly, s0(x) = 1 for each x ∈ [0,∞). Find the only monic polynomial s1 of degree 1
that is orthogonal to s0. In other words, find the only polynomial s1(x) = x+ α such
that 〈s1, s0〉 = 0 (notice that the coefficient in front of x in s1 is equal to 1 because of
the requirement that the polynomial be monic).

(b) Find the only monic quadratic polynomial s2 that is orthogonal to both s0 and s1.
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(c) Show that the polynomial p(x) = x2 + 3 can be represented as a linear combination of
the polynomials s0, s1 and s2 as follows: p = s2 + 4s1 + 5s0.

(d) Show directly that 〈s0, s0〉 = 1, 〈s1, s1〉 = 1, 〈s2, s2〉 = 4.

(e) The angle θ between the vectors u and v is defined by

〈u,v〉 = ‖u‖‖v‖ cos θ ,

where
‖u‖ :=

√
〈u,u〉

is the norm of the vector u. Find the angle between the polynomials p (defined in
part (c)) and s1 (defined in part (a)).

Hint: This can be done with very simple calculations if you use the fact that the
polynomials s0, s1, and s2 are orthogonal to each other, and that p can be expressed
as their linear combination as in part (c).

(f) Find the orthogonal projection, projs0+2s1p, of the polynomial p(x) = x2 + 3 onto the
“straight line”

` := {t(s0 + 2s1) | t ∈ R}
in the 3-dimensional inner product linear space V2(0,∞; e−x). If you have solved part
(c), then finding this orthogonal projection should be easy.

Hint: If u and v are vectors in the inner product linear space V , then the orthogonal
projection of the vector u onto the straight line in the direction of v is the vector

projvu =
〈u,v〉
〈v,v〉

v

– see the picture below.

projv u

u

v

(g) The vectors s0, s1, and s2 form a basis of the vector space V2(0,∞; e−x). By construc-
tion, this basis is orthogonal , i.e., 〈si, sj〉 = 0 if i 6= j. Use this fact and your results
above to construct an orthonormal basis {s̃0, s̃1, s̃2} of V2(0,∞; e−x), where s̃j := µjsj,
for some positive constants µj > 0 (depending on j) such that

〈s̃i, s̃j〉 = δij .

Here δij is Kroneker’s symbol, defined by δij :=

{
1 if i = j,

0 if i 6= j.
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Problem 3. Find the general solutions of the following partial differential equations. Do
not forget that they contain arbitrary functions; write explicitly the arguments of these
functions.

(a) ux = y sinx, where u = u(x, y, z).

(b) uxy = 0, where u = u(x, y).

(c) uxx = 3y2, where u = u(x, y).

Definition 1. A vector space (or linear space) is a set V = {u,v,w, . . .} in which the
following two operations are defined:

(A) Addition of vectors: u + v ∈ V , which satisfies the properties

(A1) associativity: u + (v + w) = (u + v) + w ∀u,v,w ∈ V ;

(A2) existence of a zero vector: there exists a vector 0 ∈ V such that u + 0 = u
∀u ∈ V ;

(A3) existence of an opposite element: ∀u ∈ V there exists a vector ũ ∈ V such that
u + ũ = 0;

(A4) commutativity: u + v = v + u ∀u,v ∈ V ;

(M) Multiplication of a scalar (i.e., a number) and a vector: αu ∈ V for α ∈ R, which
satisfies the properties

(M1) distributivity w.r.t. addition of vectors: α(u+v) = αu+αv ∀α ∈ R, ∀u,v ∈ V ;

(M2) distributivity w.r.t. addition of scalars: (α+β)u = αu+βu ∀α, β ∈ R, ∀u ∈ V ;

(M3) distributivity w.r.t. multiplication: (αβ)u = α(βu) ∀α, β ∈ R, ∀u ∈ V ;

(M4) normalization: 1u = u ∀u ∈ V .

Definition 2. An inner product vector space is a vector space V with an operation 〈xy, xy〉
(where xy stands for a “spaceholder,” i.e., for a slot for an argument) that satisfies the
properties

(I1) 〈u,v〉 = 〈v,u〉 ∀u,v ∈ V ;

(I2) 〈u + αv,w〉 = 〈u,w〉+ α〈v,w〉 ∀u,v,w ∈ V , ∀α ∈ R;

(I3) 〈u,u〉 ≥ 0 ∀u ∈ V ; moreover, 〈u,u〉 = 0 only if u = 0.
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