Remark: The definitions of a vector space (linear space) and inner product vector space are given at the end of this homework.

Problem 1. Recall that a basis in a vector space V is an (ordered) set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}\right\}$ such that every vector $\mathbf{u} \in V$ can be written in a unique way in the form

$$
\mathbf{u}=u_{1} \mathbf{v}_{1}+u_{2} \mathbf{v}_{2}+\cdots+u_{k} \mathbf{v}_{k}=\sum_{j=1}^{k} u_{j} \mathbf{v}_{j}
$$

The numbers u_{j} are called the components of the vector \mathbf{u} in the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}\right\}$. It can be shown that each basis of a vector space V contains the same number of vectors; the number of vectors in a basis of V is called the dimension of V and is denoted by $\operatorname{dim} V$.
As discussed in class, the set of all polynomials of degree no greater than n form a vector space, which we denote by V_{n}. An element $p \in V_{n}$ is a polynomial

$$
\begin{equation*}
p(x)=p_{0}+p_{1} x+\cdots+p_{n-1} x^{n-1}+p_{n} x^{n} . \tag{1}
\end{equation*}
$$

If p (defined above) and q, defined by

$$
q(x)=q_{0}+q_{1} x+\cdots+q_{n-1} x^{n-1}+q_{n} x^{n}
$$

are two polynomials from V_{n}, and α is a real number, the sum $p+q \in V_{2}$ of p and q and the product $\alpha p \in V_{2}$ are defined by

$$
\begin{align*}
(p+q)(x) & :=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) x+\cdots+\left(p_{n-1}+q_{n-1}\right) x^{n-1}+\left(p_{n}+q_{n}\right) x^{n} \tag{2}\\
(\alpha p)(x) & :=\alpha p_{0}+\alpha p_{1} x+\cdots+\alpha p_{n-1} x^{n-1}+\alpha p_{n} x^{n}
\end{align*}
$$

If we define the polynomials e_{j} by

$$
e_{j}(x)=x^{j}, \quad j=0,1,2, \ldots
$$

then it is clear that the polynomials $\left\{e_{0}, e_{1}, \cdots, e_{n-1}, e_{n}\right\}$ form a basis of V_{n}, in which the polynomial $p \in V_{n}$ defined in (1) has components $p_{0}, p_{1}, \ldots, p_{n-1}, p_{n}$. Clearly, $\operatorname{dim} V_{n}=n+1$.
(a) Find the components of the quadratic polynomial

$$
p=p_{0} e_{0}+p_{1} e_{1}+p_{2} e_{2}=\sum_{j=0}^{2} p_{j} e_{j} \in V_{2}
$$

that is,

$$
\begin{equation*}
p(x)=p_{0}+p_{1} x+p_{2} x^{2} \tag{3}
\end{equation*}
$$

in the basis $\left\{f_{0}, f_{1}, f_{2}\right\}$ of V_{2} defined by

$$
\begin{equation*}
f_{0}=\frac{1}{5} e_{0}, \quad f_{1}=3 e_{1}-2 e_{2}, \quad f_{2}=e_{0}-2 e_{1}+3 e_{2} \tag{4}
\end{equation*}
$$

Please write your calculations in detail.
(b) Explain in a couple of sentences why your result from part (a) implies that the set of polynomials $\left\{f_{0}, f_{1}, f_{2}\right\}$ defined by (4) indeed is a basis of V_{2}.
(c) Demonstrate that the set of vectors

$$
g_{0}=5 e_{0}, \quad g_{1}=2 e_{0}+3 e_{1}-4 e_{2}, \quad g_{2}=e_{0}+3 e_{1}-4 e_{2}
$$

is not a basis of V_{2}.
Hint: You can do this by finding a vector $h \in V_{2}$ that can be expressed as a linear combination of the vectors g_{0}, g_{1}, and g_{2} in more than one way.

Problem 2. Seth defined a family of polynomials, which he modestly denoted by s_{0}, s_{1}, s_{2}, \ldots, that satisfy the following conditions:
(i) the polynomial s_{k} is of degree k;
(ii) the polynomials s_{k} are monic, i.e., the coefficient in front of the term with the highest power of x in s_{k} (in our case, this is the coefficient of x^{k}) is equal to 1 ;
(iii) the polynomials $s_{0}, s_{1}, s_{2}, \ldots, s_{n}$ form an orthogonal basis in the space of polynomials $V_{n}\left(0, \infty ; w(x)=\mathrm{e}^{-x}\right)$ (defined below).

In condition (iii) above, $V_{n}(a, b ; w(x))$ stands for the linear space of polynomials of degree no greater than n endowed with the inner product

$$
\langle p, q\rangle=\int_{a}^{b} p(x) q(x) w(x) \mathrm{d} x
$$

where w is a non-negative function that is allowed to take value zero only at a set of isolated points. The inner product in the vector space $V_{n}\left(0, \infty ; w(x)=\mathrm{e}^{-x}\right)$ considered by Seth is, therefore,

$$
\langle p, q\rangle=\int_{0}^{\infty} p(x) q(x) \mathrm{e}^{-x} \mathrm{~d} x
$$

In the solution of this problem the following identity will be handy (where $0!:=1$):

$$
\int_{0}^{\infty} x^{k} \mathrm{e}^{-x} \mathrm{~d} x=k!, \quad k=0,1,2, \ldots
$$

(a) Clearly, $s_{0}(x)=1$ for each $x \in[0, \infty)$. Find the only monic polynomial s_{1} of degree 1 that is orthogonal to s_{0}. In other words, find the only polynomial $s_{1}(x)=x+\alpha$ such that $\left\langle s_{1}, s_{0}\right\rangle=0$ (notice that the coefficient in front of x in s_{1} is equal to 1 because of the requirement that the polynomial be monic).
(b) Find the only monic quadratic polynomial s_{2} that is orthogonal to both s_{0} and s_{1}.
(c) Show that the polynomial $p(x)=x^{2}+3$ can be represented as a linear combination of the polynomials s_{0}, s_{1} and s_{2} as follows: $p=s_{2}+4 s_{1}+5 s_{0}$.
(d) Show directly that $\left\langle s_{0}, s_{0}\right\rangle=1,\left\langle s_{1}, s_{1}\right\rangle=1,\left\langle s_{2}, s_{2}\right\rangle=4$.
(e) The angle θ between the vectors \mathbf{u} and \mathbf{v} is defined by

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

where

$$
\|\mathbf{u}\|:=\sqrt{\langle\mathbf{u}, \mathbf{u}\rangle}
$$

is the norm of the vector \mathbf{u}. Find the angle between the polynomials p (defined in part (c)) and s_{1} (defined in part (a)).
Hint: This can be done with very simple calculations if you use the fact that the polynomials s_{0}, s_{1}, and s_{2} are orthogonal to each other, and that p can be expressed as their linear combination as in part (c).
(f) Find the orthogonal projection, $\operatorname{proj}_{s_{0}+2 s_{1}} p$, of the polynomial $p(x)=x^{2}+3$ onto the "straight line"

$$
\ell:=\left\{t\left(s_{0}+2 s_{1}\right) \mid t \in \mathbb{R}\right\}
$$

in the 3 -dimensional inner product linear space $V_{2}\left(0, \infty ; \mathrm{e}^{-x}\right)$. If you have solved part (c), then finding this orthogonal projection should be easy.

Hint: If \mathbf{u} and \mathbf{v} are vectors in the inner product linear space V, then the orthogonal projection of the vector \mathbf{u} onto the straight line in the direction of \mathbf{v} is the vector

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}
$$

- see the picture below.

(g) The vectors s_{0}, s_{1}, and s_{2} form a basis of the vector space $V_{2}\left(0, \infty ; \mathrm{e}^{-x}\right)$. By construction, this basis is orthogonal, i.e., $\left\langle s_{i}, s_{j}\right\rangle=0$ if $i \neq j$. Use this fact and your results above to construct an orthonormal basis $\left\{\widetilde{s}_{0}, \widetilde{s}_{1}, \widetilde{s}_{2}\right\}$ of $V_{2}\left(0, \infty ; \mathrm{e}^{-x}\right)$, where $\widetilde{s}_{j}:=\mu_{j} s_{j}$, for some positive constants $\mu_{j}>0$ (depending on j) such that

$$
\left\langle\widetilde{s}_{i}, \widetilde{s}_{j}\right\rangle=\delta_{i j}
$$

Here $\delta_{i j}$ is Kroneker's symbol, defined by $\delta_{i j}:= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j\end{cases}$

Problem 3. Find the general solutions of the following partial differential equations. Do not forget that they contain arbitrary functions; write explicitly the arguments of these functions.
(a) $u_{x}=y \sin x$, where $u=u(x, y, z)$.
(b) $u_{x y}=0$, where $u=u(x, y)$.
(c) $u_{x x}=3 y^{2}$, where $u=u(x, y)$.

Definition 1. A vector space (or linear space) is a set $V=\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \ldots\}$ in which the following two operations are defined:
(A) Addition of vectors: $\mathbf{u}+\mathbf{v} \in V$, which satisfies the properties
$\left(A_{1}\right)$ associativity: $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w} \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V ;$
$\left(A_{2}\right)$ existence of a zero vector: there exists a vector $\mathbf{0} \in V$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ $\forall \mathbf{u} \in V ;$
$\left(A_{3}\right)$ existence of an opposite element: $\forall \mathbf{u} \in V$ there exists a vector $\widetilde{\mathbf{u}} \in V$ such that $\mathbf{u}+\widetilde{\mathbf{u}}=\mathbf{0} ;$
(A_{4}) commutativity: $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \quad \forall \mathbf{u}, \mathbf{v} \in V$;
(M) Multiplication of a scalar (i.e., a number) and a vector: $\alpha \mathbf{u} \in V$ for $\alpha \in \mathbb{R}$, which satisfies the properties
$\left(M_{1}\right)$ distributivity w.r.t. addition of vectors: $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v} \quad \forall \alpha \in \mathbb{R}, \forall \mathbf{u}, \mathbf{v} \in V$;
$\left(M_{2}\right)$ distributivity w.r.t. addition of scalars: $(\alpha+\beta) \mathbf{u}=\alpha \mathbf{u}+\beta \mathbf{u} \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{u} \in V$;
$\left(M_{3}\right)$ distributivity w.r.t. multiplication: $(\alpha \beta) \mathbf{u}=\alpha(\beta \mathbf{u}) \quad \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{u} \in V$;
(M_{4}) normalization: $1 \mathbf{u}=\mathbf{u} \quad \forall \mathbf{u} \in V$.

Definition 2. An inner product vector space is a vector space V with an operation $\langle\sqcup, \sqcup\rangle$ (where \sqcup stands for a "spaceholder," i.e., for a slot for an argument) that satisfies the properties

$$
\begin{aligned}
& \text { (I } \left.I_{1}\right)\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle \quad \forall \mathbf{u}, \mathbf{v} \in V \\
& \left(I_{2}\right)\langle\mathbf{u}+\alpha \mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\alpha\langle\mathbf{v}, \mathbf{w}\rangle \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V, \forall \alpha \in \mathbb{R} \\
& \left(I_{3}\right)\langle\mathbf{u}, \mathbf{u}\rangle \geq 0 \quad \forall \mathbf{u} \in V ; \text { moreover, }\langle\mathbf{u}, \mathbf{u}\rangle=0 \text { only if } \mathbf{u}=\mathbf{0} .
\end{aligned}
$$

