MATH 3413 Additional problems assigned on 1/28/14

Additional Problem 1. In this problem you will study the behavior of the solutions of autonomous ordinary differential equations, i.e., equations of the form

$$\frac{dx}{dt} = f(x)$$

In each of the part (A) and (B) of this problem, you have to do the following:

- (i) Find all equilibrium solutions of the ODE $\frac{dx}{dt} = f(x)$.
- (ii) Sketch the graph of the function f(x), and classify the equilibrium solutions you found in part (i). Put arrows to indicate the direction of the change of x with time.
- (iii) In the (t, x)-plane, draw the equilibrium solutions of the ODE and sketch several other solutions to show roughly their behavior.
- (iv) Solve the ODE explicitly (i.e., find its general solution).

The following trick will be useful (this is a particular case of the so-called *partial fraction* decomposition – see page 465 of the book): if you need to integrate an expression of the form $\frac{1}{(x-a)(x-b)}$ with $a \neq b$, you can find constants A and B such that

$$\frac{1}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b} ;$$

the integral of the right-hand side is standard.

(A)
$$\frac{dx}{dt} = 5 - x;$$

(B)
$$\frac{dx}{dt} = x(3 - x).$$

Additional Problem 2. Consider the autonomous differential equation

$$\frac{dx}{dt} = \mu x - x^3 , \qquad (1)$$

where μ is a parameter. Let $f(x) := \mu x - x^3$ be the right-hand side of (1).

(a) If μ ≤ 0, show that the only equilibrium solution of the ODE (1) is x(t) ≡ 0, and it is stable. Sketch the graph of f(x) and indicate how you came to your conclusion. *Hint:* Computing f'(x) might help you draw conclusions about the behavior of f(x).

- (b) If $\mu > 0$, show that the equilibrium $x^*(t) \equiv 0$ of the ODE (1) is now unstable, but there are two new equilibria, $x_1^* = -\sqrt{\mu}$ and $x_2^* = -\sqrt{\mu}$, which are stable. Again, sketch the graph of f(x) for $\mu > 0$, and show on it how x changes with time.
- (c) From your findings in parts (a) and (b), you can conclude that the qualitative nature of the solutions of the ODE (1) changes dramatically at $\mu = 0$ as the parameter μ increases such a value of μ is called a *bifurcation point* for the ODE (1). In the (μ, x) -plane (i.e., μ is on the horizontal axis, and x is on the vertical axis), plot the positions of the equilibrium solutions as functions of the parameter μ , for all values of μ you will obtain a straight horizontal line that at some point splits into three branches. In your plot, denote the positions of the stable equilibria with a solid line, and the positions of the unstable equilibria with a dashed line.