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1 Introduction

The purpose of this paper is to give a mathematical treatment of the central
force problem in classical and quantum mechanics. Our goal is to keep this
discussion entirely general and geometric. Furthermore, we will include as
many computations and proofs as possible. The two most salient benefits of
a geometric approach to physics are that this perspective often yields new
insights into old problems, and that this methodology is easily generalizable.
We begin with a brief review of some Lie groups and algebras, and then
address the Kepler problem.

2 Review of several Lie groups and algebras,

some isomorphisms

Here we define a few specific Lie groups and establish some useful isomor-
phisms, following [3].

2.1 o(3)

Let the matrices δi, i ∈ {1, 2, 3} denote the standard basis for the Lie algebra
o(3) associated with the orthogonal group O(3). δi is defined by (δi)jk = −εijk
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and may be though of as an infinitesimal rotation about the ith coordinate
axis in R3. Because of the bilinearity of the Lie bracket, in this case the matrix
commutator, the Lie bracket of a Lie algebra is completely determined by
how it acts on the basis elements. In this case, [δi, δj] = εijkδk.

The vector product on R3 is a Lie bracket, and it acts on the standard basis
vectors as ei × ej = εijk ek. Thus, the map

a1δ1 + a2δ2 + a3δ3 7→ (a1, a2, a3) ∈ R3

is a Lie algebra isomorphism.

2.2 e(3)

e(3) is the Lie algebra of the Euclidean group E(3). The Euclidean group
consists of all rigid transformations of R3, which may all be described as a
rotation followed by a translation. Its action on R3 may be described as
follows: (

x
1

)
7→
(
R v
0 1

)(
x
1

)
where R ∈ SO(3) and x, v ∈ R3. Since the tangent space to R3 is R3, we
may identify e(3) with {(

a b
0 0

) ∣∣∣a ∈ o(3), b ∈ R3

}
Together with our identification of o(3) with R3, this gives us an identification
of e(3) with o(3)× o(3) as a vector space, though not as a Lie algebra. If we

write

(
a b
0 0

)
=: (a, b), then we can describe the Lie bracket of e(3) in terms

of that of o(3):

[(a1, b1), (a2, b2)] = ([a1, a2]o(3), [a1, b2]o(3) − [a2, b1]o(3))

2.3 o(4)

Generally, the Lie algebra o(n) consists of all real antisymmetric n× n ma-
trices. Thus, o(4) consists of all matrices of the form{(

a b
−bT 0

) ∣∣∣a ∈ o(3), b ∈ R3

}
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Once again we can identify o(4) as a vector space with o(3)×o(3), but in this
case they are also isomorphic as Lie algebras. To see this, first note that the
o(4) commutator may be written as follows in terms of the o(3) commutator:

[(a1, b1), (a2, b2)] =
(

[a1, a2]o(3) + [b1, b2]o(3), [a1, b2]o(3) − [a2, b1]o(3)

)
where we have identified the vectors bi with elements of o(3) as above. Now
consider the following subspaces of o(4):

∆ = {(a, a)}, ∆′ = {(a,−a)}

Both are closed under the Lie bracket. To see this for ∆, note that

[(a, a), (b, b)] = ([a, b]o(3)+[a, b]o(3), [a, b]o(3)−[b, a]o(3)) = 2([a, b]o(3), [a, b]o(3))

A similar computation shows the closure of ∆′ under the bracket. Thus, ∆
and ∆′ are both not only subspaces but subalgebras of o(4), and together
they clearly span the whole space. The Lie bracket of an element of ∆ and
an element of ∆′ is 0:

[(a, a), (b,−b)] = ([a, b]o(3) + [a,−b]o(3), [a,−b]o(3) − [b, a]o(3)) = (0, 0)

Furthermore, both ∆ and ∆′ are isomorphic to o(3) under the map φ(a,±a) = 2a:

φ([(a,±a), (b,±b)]) = φ
(
2[a, b]o(3), ±2[a, b]o(3)

)
= 4[a, b]o(3)

= [2a, 2b]o(3)

= [φ(a,±a), φ(b,±b)]o(3)

Thus, o(4) = ∆×∆′ ∼= o(3)× o(3).

2.4 sl(2,R) and sp(2,R)

The group SL(n,R) consists of all real n × n matrices with determinant 1.
The group Sp(2n,R) is the set of 2n× 2n matrices M such that

MTΩM = Ω

where Ω is a fixed invertible antisymmetric matrix. Ω is typically chosen to
be (

0 In
−In 0

)
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where In is the n × n identity matrix, and we will follow this convention.
Consider Sp(2,R). It consists of all 2× 2 matrices M = ( a bc d ) such that(

a c
b d

)(
0 1
−1 0

)(
a b
c d

)
=

(
0 1
−1 0

)
Expanding the left hand side gives(

0 ad− bc
bc− ad 0

)
Thus, M is a symplectic matrix if and only if it has determinant 1. So in
the special case n = 2, the special linear group SL(2,R) and the symplectic
group Sp(2,R) are identified. This means that their Lie algebras sl(2,R) and
sp(2,R) are also identified. For any matrix A, the following formula holds:

det(exp(A)) = exp(tr(A))

So in this case both Lie algebras consist of the traceless 2× 2 real matrices.

3 The SO(4) symmetry of the Kepler problem

The Hamiltonian of the Kepler problem of classical mechanics is

H =
‖p‖2

2m
+

α

‖r‖

where p is momentum, m is mass, r is position, and α is a constant. We
will define two additional quantities and show that they are conserved: the
angular momentum

L := r × p
and the Runge-Lenz vector

F := p× L+mα
r

‖r‖

The vector field generated by this Hamiltonian has integral curves satisfying

ṙ =
p

m

ṗ = −α r

‖r‖3
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Then along the flow generated by H, we have

L̇ = ṙ × p+ r × ṗ

=
1

m
p× p− α

‖r‖3
r × r

= 0

Similarly, repeated application of the Hamilton’s equations can be used to
show that F has zero time derivative, which is to say it is preserved along the
flow generated by H. Equivalently, both L and F commute with H under
the Poisson bracket.

We restrict ourselves to the case of bounded motion, i.e. H < 0. Define the
following vectors in terms of their components:

Mi =
1

2

(
Li +

Fi√
−2mH

)
Ni =

1

2

(
Li −

Fi√
−2mH

)
where i ∈ {1, 2, 3}. Since L, F , and H are conserved quantities, so are M
and N . Repeated application of the relations {ri, pj} = δi,j, {ri, rj} = 0,
and {pi, pj} = 0 shows that the components of M and N obey the following
commutation relations under the Poisson bracket:

{Mi,Mj} = εijkMk

{Ni, Nj} = εijkNk

{Mi, Nj} = 0

These are the same commutation relations obeyed by the standard basis
elements of o(3)× o(3). Thus, the six-dimensional space spanned by the Mi

and Ni is Lie algebra isomorphic to o(4). Since H commutes with all the Mi

and Ni, this establishes the SO(4) symmetry of the Kepler problem.

4 The Kepler Manifold

Here we describe the geometry of the set of bound (negative total energy)
orbits of the Kepler problem. Denoted T+S3, it is called the Kepler manifold.
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We also discuss the problem of the completion of the Hamiltonian vector
field, and the regularization of the Kepler manifold. The problem is this: the
collision orbits, those with zero angular momentum and which pass through
the origin, are not well-defined because the velocity diverges as the particle
approaches the origin. The problem can be resolved by replacing time with
another parameter. With this choice of parameter, the Hamiltonian flow of
the Kepler problem is mapped symplectomorphically onto the unit geodesic
flow on the 3-sphere S3. The problematic collision orbits are mapped onto
those geodesics passing through the “north pole” of S3, which is defined in
terms of the stereographic projection involved in the mapping. In this new
description, we may complete the set of Kepler orbits. We will follow the
approach of [2].

In this section we will use specialized notation for distinguishing the various
vectors and forms according to their number of coordinates. Letters with
an arrow above them (~v) denote vectors or forms with 4 components. Plain
letters with no subscripts denote vectors or forms with 3 components (v).
Letters with subscripts or superscripts denote real numbers (vi).

4.1 Stereographic projection

We define stereographic projection as follows: S3 is the subset of R4 consist-
ing of all vectors of the form

~a = (a0, a)

a = (a1, a2, a3) ∈ R3

‖~a‖ = a0 · a0 + ‖a‖ = 1

We denote by SN the sphere S3 with the north pole (1, 0, 0, 0) removed.
Stereographic projection is the map

Ster : SN → R3

~a 7→ a

1− a0

We will also refer to the image under Ster of the vector ~a as b. The inverse
of this map is given by

Ster−1(b) = ~a =

(
‖b‖2 − 1

‖b‖2 + 1
,

2b

‖b‖2 + 1

)
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4.2 The canonical 1-form

The canonical 1-form on T ∗R3 is defined as follows. Let b ∈ R3 and Bb ∈
T ∗b R3. Then (b, Bb) is a point in T ∗R3. Let

Bb = Bi(b)db
i

where i ∈ {1, 2, 3} and let X(b,Bb) ∈ T(b,Bb)(T
∗R3) given by

X(b,Bb) = X i(b, Bb)
∂

∂bi

∣∣∣
(b,Bb)

+ X̃i(b, Bb)
∂

∂Bi

∣∣∣
(b,Bb)

Then the canonical one form ΘR3
at the point (b, Bb) takes the vector X(b,Bb)

to
ΘR3

(b,Bb)(X(b,Bb)) := Bi(b)X
i(b, B)

In other words,
ΘR3

(b,Bb) = Bi(b)db
i

We can carry out a similar construction for T ∗SN by first doing so for T ∗R4

and restricting it to the sphere by insisting that ‖~a‖ = 1 and, if ~A~a =
Aµ(~a) daµ, µ ∈ {0, 1, 2, 3}, then∑

µ

aµAµ = 0

The pullback Ster∗ of our map Ster is a diffeomorphism T ∗R3 → T ∗SN which
maps the canonical 1-form ΘR3

on T ∗R3 to the canonical 1-form ΘSN on the
punctured 3-sphere SN . Recall that b := Ster(~a), that ~a = (a0, a) and that
~A = A0 da

0 +
∑

iAi da
i. In terms of components, Ster relates T ∗R3 to T ∗SN

as follows:

Bi(b) = (1− a0)Ai(~a) + A0(~a)ai

dbi =
dai

1− a0
+

ai da0

(1− a0)2

A0(~a) =
∑
i

Bi(b)b
i

Ai(~a) =
1

2
(1 + ‖b‖2)−

(∑
i

Bi(b)b
i

)
bi
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From these we obtain the relation

‖ ~A~a‖ = (A0(~a))2 + ‖A~a‖2 =
1

4
(1 + ‖b‖2)2‖Bb‖2

Thus, the geodesic kinetic energy function on T ∗S3

G( ~A~a) =
1

2
‖ ~A~a‖2

is mapped to the following function on T ∗R3

K(b, Bb) := G( ~A~a) =
1

8
(1 + ‖b‖2)‖Bb‖2

4.3 The Hamiltonian vector field as geodesic flow on S3

Define

u : R>0 → R
x 7→

√
2x− 1

and let ξK be the Hamiltonian vector field generated by K, i.e. such that
ω(ξK , ·) = dK. Then by the chain rule,

ξu(K) = u′(K)ξK =
1√
2K

ξK

Note that on the surface K−1(1
2
), we have ξK = ξu(K). On all level sets of K

satisfying H < 0, both vector fields give the geodesic flow (though not nec-
essarily the unit geodesic flow) of the sphere, described in stereographically
projected coordinates. Generally, we have

u(K(b, Bb)) =

√
2(

1

8
(1 + ‖b‖2)2‖Bb‖2)− 1

=
1

2
(1 + ‖b‖2)‖Bb‖ − 1
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So u(K) is the Kepler Hamiltonian multiplied by ‖B‖ (with an added con-
stant), if we set b = p and Bb = −r. Crucially, we must assume ‖Bb‖ 6= 0.

1

‖Bb‖
u(K) =

1

2
(1 + ‖b‖2)− 1

‖Bb‖

=
‖b‖2

2
− 1

‖B‖
+

1

2

= H +
1

2

Defining f(b, B) = ‖Bb‖, we have

u(K) = f(b, Bb)

(
H +

1

2

)
On the surface u(K) = 0, equivalently K = 1

2
or H = −1

2
, we have

du(K(b, Bb)) = d (f(H + 1/2))

= (df) · (H + 1/2) + f · d(H + 1/2)

= f · dH

Recall that ξu(K) is defined to be the vector field such that ω(ξu(K), ·) =
d(u(K)) and ξH the vector field such that ω(ξH , ·) = dH. But d(u(K)) =
f · dH and symplectic forms are bilinear, so

ξu(K) = f · ξH

Recall that K(b, Bb) := G( ~A) = 1
2
‖ ~A‖2 so that K = 1

2
⇒ ‖ ~A‖2 = 1. Also

recall that, on this surface, ξu(K) gives the unit geodesic flow on the sphere.
Thus, we have diffeomorphically mapped the Hamiltonian flow of the Kepler
problem to the unit geodesic flow on the 3-sphere, for orbits of energy H =
−1

2
and under the condition that ‖B‖ 6= 0. We could perform a similar

calculation for any other negative value of H, mapping it to the geodesic
flow on the 3-sphere but with a different speed (orbiting faster or slower).
Thus, the space of orbits of the Kepler problem may be identified with the
set of all nonzero covector fields on the 3-sphere. This manifold is denoted
T+S3 and is called the Kepler manifold.

Because the geodesic flow on T ∗S3 is obviously complete, this identification
allows us to complete the Hamiltonian vector field of the Kepler problem.
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5 The Kepler manifold as a Marsden-Weinstein

reduced space

Here we show how to realize the Kepler manifold T+S3 as a Marsden-
Weinstein reduced space of the Lie algebra sp(2,R) ∼= sl(2,R).

5.1 The Kepler manifold as a subset of Λ2R6

First we give an alternative construction of T+S3. Let R6 be a 6-six di-
mensional real vector space equipped with a scalar product of signature
(+,+,−,−,−,−). That is, for any two vectors a = (a−1, ..., a4) and b =
(b−1, ..., b4),

(a, b) = a−1b−1 + a0b0 −

(
4∑
i=1

aibi

)
Define

K := {u ∧ v 6= 0
∣∣∣ ‖u‖ = ‖v‖ = (u, v) = 0} ⊂ Λ2 R6

Since the orthogonal group O(2, 4) is defined to be the group whose action
does not change the value of this scalar product, and u ∧ v = 0 iff u = 0,
v = 0, or u = λv for λ ∈ R, it is clear the K is invariant under the action of
O(2, 4).

We will show that K is in fact an orbit of O(2, 4), and that under the action
of the connected component O0(2, 4) of O(2, 4), K decomposes into the union
of two orbits, K = K+∪K−. Each of these two orbits is diffeomorphic to the
Kepler manifold T+S3.

First we choose an orthogonal basis (e−1, e0, e1, e2, e3, e4) of R6 such that

‖e−1‖ = ‖e0‖ = 1

‖ei‖ = −1, i ∈ {1, 2, 3, 4}

This gives us a splitting of R6 into orthogonal subspaces: R2 spanned by
e−1, e0 which inherits a positive definite scalar product, and R4 spanned by
e1, e2, e3, e4 which inherits a negative definite scalar product.

Next we define a scalar product on Λ2 R6 in terms of the scalar product on
R6 described above:

(u ∧ v, x ∧ y) := det

(
(u, x) (u, y)
(v, x) (v, y)

)
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Now for all u ∧ v ∈ K, we must have

(e−1 ∧ e0) · (u ∧ v) 6= 0

To see this note that

(e−1 ∧ e0) · (eµ ∧ eν) = (e−1, eµ)(e0, eν)− (e−1, eν)(e0, eµ) 6= 0

If and only if µ = −1 and ν = 0 or vice versa. Since the dot product is
bilinear, this means that (e−1∧ e0) · (u∧ v) 6= 0 if and only if u has a nonzero
e−1 component and v has a nonzero e0 component or the other way round.
We are assured that this is the case, as both u and v have 0 R6-norm, are
not the zero vector, and are not parallel, and if they only had components
in the negative definite subspace this would not be possible. Thus, we have
the following decomposition of K:

K = K+ ∪ K−
K+ = {u ∧ v ∈ K

∣∣(e−1 ∧ e0) · (u ∧ v) > 0}
K− = {u ∧ v ∈ K

∣∣(e−1 ∧ e0) · (u ∧ v) < 0}

We now parameterize K+. First, we choose a new u and v from the space
spanned by the original u and v such that

(e0, u) = (e1, v) = 0

and in a way that does not change their wedge product u ∧ v. We can do
this as follows: recall that u ∧ v = u ∧ (v + ru) for r ∈ R and similarly
u∧ v = (u+ sv)∧ v, s ∈ R. We choose our r and s so that the resulting two
factors are as desired. Since this process did not alter the wedge product, we
continue to refer to our new choices as u and v. We can further arrange for
(e−1, u) and (e0, v) to be positive: recall we are in K+ and with our current
choice of u and v, (e−1 ∧ e0) · (u ∧ v) = u−1v0 > 0 so if (e−1, u) is negative
then so must be (e0, v). But we have

u ∧ v = (−1)(−1)u ∧ v = (−u) ∧ (−v)

so we can always choose our u and v as desired.

We have established that neither u nor v can lie entirely in either of our
subspaces R2 and R4, so they must be of the form

u = u−1e−1 + u−

v = v0e0 + v−

11



where u−, v− ∈ R4\{0}. Since u ∧ v is only dependent on the product of the
magnitudes of the factors rather than their individual magnitudes, only the
ratios

u−1

‖u−‖
v0

‖v−‖

are fixed, so we can arrange for ‖u−‖ = ‖v−‖ = −1. Furthermore, we must
have (u−, v−) = 0. To see this, recall that if u = u+ + u−, u+ ∈ R2, u− ∈ R4

and similarly for v, their R6 inner product (signature (+,+,−,−,−,−)) may
be expressed in terms of the standard Euclidean inner products on R2 and
R4 as follows:

(u, v)R6 = (u+, v+)R2 − (u−, v−)R4

We have chosen u and v such that (u, v)R6 = 0 and (u+, v+)R2 = 0. Thus, we
must have that u− and v− are orthogonal.

To summarize, we have parameterized K+ as follows:

u ∧ v = s(e−1 + u′) ∧ (e0 + v′)

‖u−‖ = ‖v−‖ = −1

(u−, v−) = 0

with s ∈ R×. Note that u−, being in R4 and having (negative) unit norm,
naturally lives on the 3-sphere. v− lives in R4, must be orthogonal to u (and
so must live in a subspace isomorphic to R3) and has unit norm (restricting it
to S2). This gives us an explicit diffeomorphism between K+ and the Kepler
manifold:

K+ → R× × T 1S3 ∼= T+S3

where T 1S3 denotes the bundle of unit covectors. An analogous calculation
can be performed for K−.

Now we shall use the realization of the Kepler manifold as K in order to
express it as a Marsden-Weinstein reduced space.

5.2 Some isomorphisms

First, we will establish several useful isomorphisms. Let V be a real vector
space with a non-degenerate scalar product. Then we can identify the vector
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space of 2-vectors Λ2(V ) with the Lie algebra o(v) of the orthogonal group
of V , consisting of the real antisymmetric matrices, as

(u ∧ v)x = (u, x)v − (v, x)u

The antisymmetry of such an operator is obvious, and its linearity follows
from the bilinearity of the scalar product. The Killing form 〈A,B〉 :=
tr(adA◦adB) defines an nondegenerate inner product on o(V ) and therefore
gives us an identification of o(V ) with its dual space o(V )∗, so we have

o(V )∗ ∼= o(V ) ∼= Λ2(V )

Under this identification, the coadjoint action of O(V ) on o(v)∗ is its usual
action on Λ2(V ):

g(u ∧ v) = gu ∧ gv

Let W be a real symplectic vector space with symplectic form ω and cor-
responding Poisson bracket {·, ·}. Again using the Killing form as an inner
product, we may identify sp(W ) with its dual space sp(W )∗. We can also
identify sp(W ) with the space of homogeneous quadratic polynomials via the
map

P (A)(w) =
1

2
ω(Aw,w) =

1

2
ωijA

i
kw

kwj

We will show that this map is a Lie algebra isomorphism between sp(W )
under the commutator and the space of homogeneous quadratic polynomials
under the Poisson bracket. It is obviously a vector space isomorphism so
we need only check that it preserves the Lie bracket. First, some notation.
Since W is a symplectic vector space, it is even dimensional (dimension 2n),
and so the indices i, j, k in the definition of P range from 1 to 2n. For a
given vector w, we will identify its first n components with the Rn-vector x
and the second n components with y, and assume that these coordinates are
canonical. It is easy to check from the definition of Sp(W ) that any matrix
A ∈ sp(W ) must be of the form (

a b
c −a

)
where the lower case letters in this instance represent arbitrary n× n block
matrices with real entries. In fact, matrices of this form exactly comprise
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sp(W ). This allows us to write P (A) as

P (A) =
1

2

(
x y

)( 0 In
−In 0

)(
a b
c −a

)(
x
y

)
Take a second matrix from sp(W )

B =

(
q r
s −q

)
and apply the general formula

{P (A), P (B)} =
∑
i

∂P (A)

∂xi
∂P (B)

∂yi
− ∂P (A)

∂yi
∂P (B)

∂xi

to check directly that

{P (A), P (B)} = P ([A,B])

This establishes that P is a Lie algebra isomorphism.

By letting A vary, the map P identifies sp(W )∗ with S2(W ), the space of
symmetric 2-tensors on W :

S2(W )→ sp(W )∗

w ⊗ w 7→ 1

2
ωij(·)ikwkwj

Under this identification, the coadjoint action of Sp(W ) is its usual action
φ : Sp(W )×S2(W )→ S2(W ) on S2(W ). To see this, recall that the coadjoint
action of an element g on a 1-form µ is defined by

〈Ad]gµ,B〉 := 〈µ,Adg−1B〉

and note that

g(w ⊗ w) := gw ⊗ gw 7→ 1

2
ω((·)gw, gw)

We can multiply both arguments of ω by g−1 on the left without changing
the value of ω (this is the definition of the symplectic group):

1

2
ω((·)gw, gw) =

1

2
ω(g−1(·)gw,w)
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Plugging in a matrix B ∈ sp(W ) we see that we have the coadjoint action:

(Ad]gP (w))(B) =
1

2
ω(Bgw, gw)

=
1

2
ω(g−1Bgw,w)

= P (w)(Adg−1B)

So we have the following commutative diagram:

S2(W )
P−−−→ sp(W )∗

φg

y yAd]g
S2(W )

P−−−→ sp(W )∗

With this identification, the moment map for the group action of Sp(W )
becomes the square, as we will show.

sq : W → S2(W ) ∼= sp(W )∗

w 7→ w ⊗ w ∼ 1

2
ωij(·)ikwkwj

Let V be a vector space with a scalar product (·, ·)V and W be a symplectic
vector space with symplectic form (·, ·)W . Then the product vector space
V ⊗W can be endowed with a natural symplectic form (·, ·)V⊗W . We define
it for elements of the form v ⊗ w and extend it to the rest of V ⊗ W by
bilinearity:

(v1 ⊗ w1, v2 ⊗ w2)V⊗W := (v1, v2)V (w1, w2)W (1)

This choice of symplectic form gives us a natural embedding of O(V ) and
Sp(W ) into Sp(V ⊗W ):

O(V )→ Sp(V ⊗W )

A 7→ A⊗ IW

Sp(W )→ Sp(V ⊗W )

B 7→ IV ⊗B
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It is easy to check that, under this embedding, O(V ) and Sp(W ) are each
others’ centralizers:

(A⊗IW )(IV⊗B) = (AIV⊗IWB) = (A⊗B) = (IVA⊗BIW ) = (IV⊗B)(A⊗IW )

5.3 Constructing the moment map of Sp(W )

Here we construct the moment maps for the action of Sp(W ) on W and the
action of O(V ) on V directly from the definition, which can be found in the
appendix.

5.3.1 Notation

Let (W,ω) be a symplectic vector space, and

Ψ : Sp(W )×W → W (2)

be the representation of the symplectic group on (W,ω). To simplify the
notations, we will often write gw instead of Ψgw (where w ∈ W ), and will
think of g as a matrix acting on the column vector w ∈ W :

gw := Ψgw .

The symplectic group Sp(W ) is characterized by

Sp(W ) = {g ∈ GL(W ) : ω(gw, gw′) = ω(w,w′) ∀w,w′ ∈ W}
= {g ∈ GL(W ) : gTωg = ω} .

To obtain its Lie algebra sp(W ), set g = etA, differentiate ω(etAw, etAw′) =
ω(w,w′) with respect to t and set t = 0 to obtain the condition

ω(Aw,w′) + ω(w,Aw′) = 0 , (3)

or, equivalently,

sp(W ) = {A ∈ gl(W ) : etA
T

ωetA = ω}
= {A ∈ gl(W ) : ATω + ωA = 0}
= {A ∈ gl(W ) : AT = ωAω} .
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The action (2) induces a natural action of Sp(W ) on Sk(W ):

Ψk : Sp(W )× Sk(W )→ Sk(W ) : (g,⊗kw) 7→ Ψk
g(⊗kw) := ⊗k(gw) , (4)

where ⊗kw := w⊗w⊗· · ·⊗w (k times). Using this, we can define a natural
action of the Lie algebra sp(W ) on Sk(W ):

ψk : sp(W )× Sk(W )→ Sk(W ) : (A,⊗kw) 7→ ψkA(⊗kw) , (5)

where

ψkA(⊗kw) :=
d

dt

∣∣∣∣
t=0

Ψk
exp(tA)(⊗kw) =

d

dt

∣∣∣∣
t=0

⊗k (etAw) . (6)

5.3.2 Sp(W )-intertwining isomorphism S2(W )∗ → P 2(W )

Let P 2(W ) be the vector space (over R) of real-valued homogeneous quadratic
polynomials, i.e., p ∈ P 2(W ) if

p(w) =
1

2
p(w,w) , w ∈ W , (7)

where p is a symmetric bilinear form on W :

p(w,w′) := p
ij
wi(w′)j = wTpw′ , p

ij
= p

ji
.

Clearly, p can be considered as an element of S2(W )∗:

p : S2(W )→ R : w ⊗ w 7→ 〈p, w ⊗ w〉 := p(w,w) .

This establishes a bijective correspondence between S2(W )∗ and P 2(W ) as
vector spaces.

The action Ψ2 of Sp(W ) on S2(W ) defined in (4) induces naturally an action
Ψ2,] of Sp(W ) on S2(W )∗:

Ψ2,] : Sp(W )× S2(W )∗ → S2(W )∗ : (g, p) 7→ Ψ2,]
g p := (Ψ2

g−1)∗p ,

i.e.,
〈Ψ2,]

g p, w ⊗ w〉 =
〈
p, (g−1w)⊗ (g−1w)

〉
. (8)

The symplectic group Sp(W ) has a natural representation on P 2(W ):

Π2 : Sp(W )× P 2(W )→ P 2(W ) : (g, p) 7→ Π2
gp , (Π2

gp)(w) := p(g−1w) ,
(9)
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which, according to (7) and (8), reads

(Π2
gp)(w) =

1

2
p(g−1w, g−1w) .

Clearly, these definitions make the representations of Sp(W ) on S2(W ) and
P 2(W ) compatible with the isomorphism between them.

5.3.3 Sp(W )-intertwining isomorphism P : sp(W )→ P 2(W )

Every homogeneous quadratic polynomial p ∈ P 2(W ) can be written as

p(w) =
1

2
ω(Bw,w)

for some matrix B since the symplectic matrix ω is nondegenerate. What
conditions does the matrix B satisfy? Using the symmetry of p and antisym-
metry of ω, we obtain

1

2
ω(Bw,w′) =

1

2
p(w,w′) =

1

2
p(w′, w) =

1

2
ω(Bw′, w) = −1

2
ω(w,Bw′) ,

that is,
ω(Bw,w′) + ω(w,Bw′) = 0 ,

which is exactly the condition (3) on the elements of the Lie algebra sp(W ).

The constructed correspondence

P : sp(W )→ P 2(W ) : B 7→ P (B) , P (B)(w) :=
1

2
ω(Bw,w) (10)

intertwines the adjoint representation of Sp(W ) on sp(W ) and the represen-
tation Π2 (9) of Sp(W ) on P 2(W ):

P (AdgB)(w) =
1

2
ω(AdgB w,w) =

1

2
ω(gBg−1w,w)

=
1

2
ω(Bg−1w, g−1w) = P (B)(g−1w) = Π2

g(P (B))(w) .
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5.3.4 Sp(W )

Now we construct the moment map

ΦW : W → sp(W )∗

of the action Ψ (2) of Sp(W ) on W . The Hamiltonian vector field Ã ∈ X (W )
corresponding to A ∈ sp(W ) is defined as

Ã(w) =
d

dt

∣∣∣∣
t=0

Ψexp(tA) w =
d

dt

∣∣∣∣
t=0

etAw = Aw .

The map
Φ̂W : sp(W )→ C∞(W ) : A 7→ Φ̂W (A)

is constructed by requiring that

iÃ ω = d
[
Φ̂W (A)

]
,

i.e.,

ωijA
i
kw

k =
∂

∂wj
[
Φ̂W (A)(w)

]
,

which implies that we can take

Φ̂W (A)(w) =
1

2
ωijA

i
kw

kwj =
1

2
ω(Aw,w) .

Therefore,
Φ̂W (A) = P (A) ,

where P (A) is defined in (10).

Now it is easy to construct the moment map

ΦW : W → sp(W )∗ :

we have

ΦW (w)(A) := Φ̂W (A)(w) =
1

2
ω(Aw,w) .
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5.4 Generalizing to Sp(V ⊗W )

We perform a similar construction for the moment map

Φ : V ⊗W → (o(V )× sp(W ))∗ ⊂ sp(V ⊗W )∗

of the action of O(V )× Sp(W ) on V ⊗W , following the strategy of [4]. The

Hamiltonian vector field Â×B ∈ X (V ⊗ W ) corresponding to A × B ∈
(o(V )× sp(W )) is defined as[

Â×B
]

(v ⊗ w) =
d

dt

∣∣∣∣
t=0

et(A×B) v ⊗ w = Av ⊗Bw .

The map

Φ̂ : o(V )× sp(W )→ C∞(V ⊗W )

A×B 7→ Φ̂(A×B)

is constructed by requiring that

d
[
Φ̂(A×B)

]
= i
(
Â×B

)
Ω ,

where Ω is the symplectic form on V ⊗W defined in (1). In components and
taken at a specific point, this reads(

dΦ̂A×B

)
v⊗w

(v′ ⊗ w′) =
[
gijA

i
k ωµνB

µ
ρ (v ⊗ w)kρ d(v ⊗ w)jν

]
(v′ ⊗ w′)

where (gij) is the metric (inner product) on V . Taking one coordinate of
dΦA×B ,

∂Φ̂A×B

∂(v ⊗ w)jν
(v ⊗ w) = gijA

i
k ωµνB

µ
ρ (v ⊗ w)kρ

Therefore, a valid choice for Φ̂ is(
Φ̂A×B

)
(v ⊗ w) =

1

2
g(Av, v)ω(Bw,w) ,

i.e.

(Φv⊗w) (A×B) =
1

2
g(Av, v)ω(Bw,w) (11)
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We can project Φ to the moment maps ΦW and ΦV for the actions of the
subgroups Sp(W ) and SO(V ). For Sp(W ), set A to the identity in (11) to
obtain ΦW . For SO(V ), first choose a symplectic basis for W :

e1, ..., en, f1, ..., fn

and let D : W → W be the linear operator defined by

D ej = −fj
Dfj = ej .

(12)

Set B to D in (11) to obtain ΦV .

5.5 Alternative expressions for the moment maps

It can easily be seen that

S2(V ⊗W ) ∼=
[
Λ2(V )⊗ Λ2(W )

]
⊕
[
S2(V )⊗ S2(W )

]
. (13)

The symplectic form on W gives us a map

Λ2(W )→ R
w1 ∧ w2 7→ ω(w1, w2)

so that we can map the first summand in (13) to Λ2(V ) ∼= o(V )∗:

σV : Λ2(V )⊗ Λ2(W )→ Λ2(V ) ∼= o(V )∗

(v1 ∧ v2)⊗ (w1 ∧ w2) 7→ ω(w1, w2)v1 ∧ v2

Let proj1 be the projection onto the first summand in (13), and let Φ′V be

the following map from S2(V ⊗W ) ∼=
[
Λ2(V )⊗Λ2(W )

]
⊕
[
S2(V )⊗S2(W )

]
to o(V )∗:

Φ′V : S2(V ⊗W )→ o(V )∗ ∼= Λ2 V

v1 ⊗ w1 � v2 ⊗ w2 7→
1

2
g
(

(·)v1, v2

)
ω
(
Dw1, w2

)
,

where D is the map defined in (12). This map may be expressed as

Φ′V = σV ◦ proj1
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where σV is understood to be acting on (v1 ∧ v2) ⊗ (Dw1 ∧ w2). Then our
moment map ΦV is the quadratic map from V ⊗W to o(V )∗ associated with
Φ′V .

We can perform an analogous construction for the moment map ΦW of the
group action of Sp(W ) on V ⊗W . We use the inner product on V to generate
a map

S2(V )→ R
(v1 � v2) 7→ (v1, v2)V

where v1� v2 denotes the symmetric tensor product of v1 and v2. So we can
construct the map

σW : S2(V )⊗ S2(W )→ S2(W ) ∼= sp(W )∗

(v1 � v2)⊗ (w1 � w2) 7→ g(v1, v2)w1 � w2

and define a function Φ′W from S2(V ⊗W ) to sp(W )∗ ∼= S2(W ):

Φ′W = σW ◦ proj2

(v1 � v2)⊗ (w1 � w2) 7→ 1

2
g
(
v1, v2

)
ω
(

(·)w1, w2

)
where proj2 is the projection onto the second summand in (13). Then our
moment map ΦW is the quadratic map from V ⊗W to sp(W )∗ associated
with Φ′W .

5.6 K as a Marsden-Weinstein reduced space

We will now apply this general construction to the specific case V = R6

with the standard Euclidean inner product and W = R2 with the standard
symplectic form. Taking the standard basis for R2, we introduce the following
notation for elements of V ⊗W :(

u
0

)
:= u⊗

(
1
0

)
(

0
v

)
:= v ⊗

(
0
1

)
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Then the moment map

ΦV = ΦR6 : R6 ⊗ R2 → Λ2(R6) ∼= o(V )∗

is given by

ΦR6

(
u
v

)
(C) =

1

2
[(Cu, v)− (Cv, u)] = (Cu, v)

where C ∈ o(V ) and the last equality follows from the fact that C is by
definition antisymmetric. Using our identification of o(V )∗ with Λ2(V ), we
can rewrite this formula as

ΦR6

(
u
v

)
= u ∧ v

Similarly, we apply our general construction and find that the moment map

ΦW = ΦR2 : R6 ⊗ R2 → sp(2,R) ∼= sp(2,R)∗

is given by

ΦR2

(
u
v

)
=

(
u · v ‖v‖2

−‖u‖2 −u · v

)
We now consider Φ−1

R2 (0). Clearly it contains all pairs of vectors satisfying
the defining conditions of K:

(u, v) = ‖u‖ = ‖v‖ = 0

⇒ΦR2

(
u
v

)
=

(
u · v ‖v‖2

−‖u‖2 −u · v

)
=

(
0 0
0 0

)
The stationary subgroup of 0 is equal to the whole SL(2,R) ∼= Sp(2,R): a
matrix g ∈ SL(2,R) acts as

g =

(
a b
c d

)
:

(
u
v

)
7→ (gT )−1

(
u
v

)
=

(
du− cv
−bu+ av

)
Expanding the bivector (du− cv) ∧ (−bu+ av),

(du− cv) ∧ (−bu+ av) = (du ∧ −bu) + (du ∧ av) + (−cv ∧ −bu) + (−cv ∧ av)

= −db(u ∧ u) + ad(u ∧ v)− bc(u ∧ v)− ca(v ∧ v)

= (ad− bc)(u ∧ v)

= det(g)(u ∧ v)

= (u ∧ v)
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Thus, we see that Φ−1
R6 (u ∧ v) is an SL(2,R)-invariant manifold. Let O =

Φ−1
R6 (u ∧ v) be the preimage of a fixed element u ∧ v with

u ∧ v ∈ ΦR6

(
Φ−1

R2 (0)
)

Then O is a whole SL(2,R)-orbit: the group action of SL(2,R) on O is free
and transitive. To see the transitivity, note that(

u1

v1

)
,

(
u2

v2

)
∈ O

means exactly that u1 ∧ v1 = u2 ∧ v2. This implies that u1, and v1 lie in the
span of u2 and v2, i.e.

∃ a, b, c, d ∈ R : u1 = au2 + bv2, v1 = cu2 + dv2

We can again expand this bivector and show that the condition that the two
wedge products are equal is exactly the condition that ad−bc = 1. This says
precisely that given any two vectors in O, there is a matrix from SL(2,R)
which maps one to the other, i.e. the group action is transitive.

Therefore, we may regard K as a Marsden-Weinstein reduced space:

K ∼= Φ−1
R2 (0)/SL(2,R) ∼= Φ−1

R2 (0)/Sp(2,R)

6 Appendix

6.1 Symplectic Manifolds

Let M be a finite-dimensional smooth manifold. A symplectic structure or
symplectic form on M is a differential 2-form ω ∈ C∞(Λ2τ ∗(M)) that satisfies
the following:

dω = 0 (14)

∀m ∈M : ∀Xm ∈ τm(M)\{0} : ∃Ym ∈ τm(M) : ωm(Xm, Ym) 6= 0 (15)

The pair (M,ω) is called a symplectic manifold.

Theorem (Darboux): Every symplectic manifold (M,ω) is of even dimen-
sion (dimension 2n) and locally there exist coordinates (q1, ..., qn, p1, ..., pn)
such that

ω =
n∑
i=1

dqi ∧ dpi
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That is, there exists a basis in which the matrix of ω is

(ω) =

(
0 In
−In 0

)
These coordinates are called canonical.

Let (M,ω) and (N,ω′) be two symplectic manifolds. Then a transformation
φ from M → N is called a symplectomorphism (or canonical transformation
in physics parlance) if it is a diffeomorphism and satisfies

φ∗ω′ = ω

where φ∗ is the pullback of φ.

6.2 Symplectic Action of a Group

Let G be a Lie group and (M,ω) be a symplectic manifold. A group action
of G on M

φ : G×M →M

(g,m) 7→ φg(m)

is called symplectic if
∀g ∈ G : φgω = ω

That is, the transformation of M determined by any element of G is a sym-
plectomorphism.

Let G be a Lie group acting on a symplectic manifold (M,ω) by symplecto-
morphisms, and let g be the Lie algebra associated with G. Then every g ∈ g
defines a vector field ξ̃ ∈ C∞(τ(M)) as follows. Let m ∈M and f ∈ C∞(M):

ξ̃(m)(f) :=
d

dt
(f ◦ φexp tξ(m))

∣∣∣
t=0

where φexp tξ is the one-parameter group of symplectomorphisms generated
by ξ (for each t ∈ R, exp tξ is an element of G and thus defines a symplecto-
morphism according to the group action. Furthermore, these transformations
form a group under composition). All these transformations are symplecto-
morphisms, meaning their pullbacks do not change ω, so for a vector field ξ̃
of type we have

0 =
d

dt
(φ∗exp tξω)

∣∣∣
t=0

= Lξ̃ω = i(ξ̃)dω + d(i(ξ̃)ω)
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and because ω is closed, i.e. dω = 0, we obtain d(i(ξ̃)ω) = 0.

Any vector field ξ̃ ∈ C∞(τ(M)) which satisfies

d(i(ξ̃)ω) = 0

is called an infinitessimal symplectic transformation (or, in physics, an in-
finitesimal canonical transformation).

6.3 The Hamiltonian and Hamilton’s Equations

Let ξ̃ ∈ C∞(τ(M)) be an infinitesimal symplectic transformation. Then
there exists locally (or globally if H1(M) = 0) a function H ∈ C∞(M) (or
rather, an equivalence class of functions, 2 functions being equivalent if they
differ by an additive constant) defined by

i(ξ̃)ω = dH

This function is called the Hamiltonian.

In canonical coordinates (qi, pi), i ∈ {1, ..., n} ,

ξ̃ = ξ̃i
∂

∂qi
+ ξ̃

∂

∂pi

so

i(ξ̃)ω = −ξ̃n+idqi + ξ̃idpi

=: dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi

and therefore

ξ̃ =
∂H

∂pi
∂

∂qi
− ∂H

∂qi
∂

∂pi

This says that the integral curves of the vector field ξ̃ are given by

d

dt

(
qi

pi

)
= ξ̃ =

( ∂H
∂pi

−∂H
∂qi

)
These equations are called Hamilton’s equations.
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6.4 The Poisson Bracket

Given a symplectic manifold (M,ω), we may define a Lie algebra structure
on the vector space of smooth functions on M . The Lie bracket we will define
on C∞(M), called the Poisson bracket, obeys one additional axiom, and the
resulting structure is called a Poisson algebra.

If H1, H2 ∈ C∞(M), then their Poisson bracket

{·, ·} : C∞(M)× C∞(M)→ C∞(M)

(H1, H2) 7→ {H1, H2}

is defined by
{H1, H2} := −ξ̃H1H2

where ξ̃H1 ∈ C∞(τ(M)) is the vector field corresponding to H1. That is,

ξ̃H1 =
∂H1

∂pi
∂

∂qi
− ∂Hi

∂qi
∂

∂pi

We can give several other expressions for {H1, H2}:

{H1, H2} = −ξ̃H1H2

= −dH2(ξ̃H1)

= −i(ξ̃H1)dH2

= −i(ξ̃H1)i(ξ̃H2)ω

= ω(ξ̃H1 , ξ̃H2)

=
∂Hi

∂qi
∂H2

∂pi
− ∂H1

∂pi
∂H2

∂qi

From this last expression especially, it is easy to see that the Poisson bracket
is bilinear and antisymmetric, and also satisfies the derivative property (Leib-
niz rule):

{H1, H2H3} = {H1, H2}H3 +H2{H1, H3}

More generally, if A is a commutative ring then a Poisson bracket on A is a
function

{·, ·} : A× A→ A

(f1, f2) 7→ {f1, f2}

with the following properties:
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1. bilinearity

2. antisymmetry

3. derivative property/ Leibniz rule: {f1, f2f3} = {f1, f2}f3 + f2{f1, f3}

4. Jacobi identity: {f1, {f2, f3}}+ {f3, {f1, f2}}+ {f2, {f3, f1}} = 0

A Poisson algebra is a commutative ring with a Poisson bracket, i.e. a Lie
bracket which also has the derivative property.

Let Ham(M) be the real vector space of all vector fields ξ̃ such that ∃H ∈
C∞(M) : i(ξ̃)ω = dH. Our symplectic form ω induces a morphism of vector
spaces

C∞(M)→ Ham(M)

H 7→ ξ̃H

Note that, if M is connected, Ham(M) ∼= C∞(M)/R since ξ̃H determines
H up to a constant. That is, if M is connected, the above map has a kernel
consisting of the constant functions. Connectedness is required because if
M had, say, 2 connected components then it could have a different constant
value on each component while still having everywhere a differential of 0. In
other words, we have the short exact sequence

0→ R→ C∞(M)→ Ham(M) ∼= C∞(M)/R→ 0

Using the identities Lξ̃hω = 0, L = i ◦ d+ d ◦ i, and d ◦ dH = 0, we obtain

ξ̃{H1,H2} = −
[
ξ̃H1 , ξ̃H2

]
meaning that the maps in our short exact sequence are Lie algebra mor-
phisms, with R equipped with identically zero Lie bracket. Only constant
functions have zero Poisson bracket with every function, so the image of R
under the map R→ C∞(M) is exactly the center of C∞(M)

6.5 The Moment Map

Let φ : G×M →M be the symplectic action of Lie group G on the symplectic
manifold (M,ω). Let

Ad : G× g→ g
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be the adjoint representation of G on g, where g is the Lie algebra of G, and
let

Ad] : G× g∗ → g∗

(g, µ) 7→ Ad]gµ := (Adg−1)∗µ

be the coadjoint representation.

The composition of the map

˜: g→ Ham(M)

ξ 7→ ξ̃

and the map Ham(M)→ C∞(M)/R (defined locally) gives a locally defined
map

Φ̂ : g→ C∞(M)

ξ 7→ Φ̂(ξ)

The symplectic action of G on (M,ω) is said to be Hamiltonian if there exists
a Lie algebra morphism

Φ̂ : g→ C∞(M)

which is also a G-morphism, i.e. the following diagram is commutative:

sp(W )
Φ̂−−−→ C∞(M)

Adg

y yφ∗g
sp(W )

Φ̂−−−→ C∞(M)

and if it further satisfies
i(ξ̃)ω = dΦ̂(ξ)

It can be proven that if the action of G is Hamiltonian, then the map Φ̂ is
globally, and not only locally, defined. Since Φ̂ is linear, if the action of our
Lie group G on (M,ω) is Hamiltonian we obtain the map

Φ : M → g

m 7→ Φ(m)
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defined by
Φ(m)(ξ) := Φ̂(ξ)(m)

That is,

dΦ(m)(ξ) = i(ξ̃(m))ω

= i

(
d

dt
φexp tξ(m)

∣∣∣
t=0

)
ω

Φ is called the moment map. Because the action of G is Hamiltonian, Φ is
equivariant:

Φ ◦ φg = Ad]g ◦ Φ

Theorem: Let H : M → R be a G-invariant function, i.e. H(φg(m)) =

H(m) for all m ∈ M and all g ∈ G. Then Φ̂(ξH) ∈ C∞(M) is an integral of
the motion generated by H.
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