Hint to Problem 3.7/41

Let the angle of the sector that is cut out be $(2 \pi-\theta)$ radians. Then the angle at the origin of the remaining sector will be θ radians (see the figure on the left). The length of the

curvilinear part of the boundary of the remaining sector is $\frac{\theta}{2 \pi}$ times the circumference of a circle of radius R, i.e., it is equal to $\frac{\theta}{2 \pi} 2 \pi R$. This length is equal to the circumference of the base of the conical drinking cup, therefore we can find the radius r of the base of the cone from

$$
\frac{\theta}{2 \pi} 2 \pi R=2 \pi r
$$

The height h of the cone can be found easily in terms of R and θ by using the Pythagorean Theorem (see the figure on the right). Once r and h are known (in terms of R and θ), the volume of the cone is

$$
(\text { volume of the cone })=\frac{1}{3}(\text { area of the base })(\text { height })=\frac{1}{3} \pi r^{2} h .
$$

It is convenient to introduce the variable

$$
x:=\frac{\theta}{2 \pi}
$$

and to write the volume as a function of this new variable, i.e., to define the function

$$
f(x):=(\text { volume of the cone }),
$$

where the volume of the cone is expressed in terms of the new variable x (and the radius R, which is constant).
You have to find the value x^{*} of x at which the function f has an extremum. You will find only one such value, which is clearly a maximum, since V is non-negative and it is zero when $\theta=0$ (i.e., when $x=0$) and when $\theta=2 \pi$ (i.e., when $x=1$).

