General solution of a linear homogeneous ODE with constant coefficients:

To find the general solution of the linear homogeneous ODE with constant coefficients $L y=0$, where

$$
\begin{equation*}
L y:=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y, \tag{1}
\end{equation*}
$$

first solve the characteristic equation of this ODE. Each root of the characteristic equation contributes a term to the general solution of the ODE:

- each real root r of the characteristic equation of multiplicity p contributes to the general solution a term

$$
P_{p-1}(x) e^{r x},
$$

where $P_{p-1}(x)$ is a polynomial of degree ($p-1$);

- each conjugate pair of complex roots $\alpha \pm i \beta$ of the characteristic equation, where each of the the two roots has multiplicity p, contributes to the general solution a term

$$
e^{\alpha x}\left[Q_{p-1}(x) \cos \beta x+R_{p-1}(x) \sin \beta x\right],
$$

where $Q_{p-1}(x)$ and $R_{p-1}(x)$ are polynomials of degree $(p-1)$.

Particular solutions of a linear non-homogeneous ODE with constant coefficients

The general solution of the linear non-homogeneous ODE with constant coefficients $L y=f(x)$ (where $L y$ is given by the expression (1) above) is equal to the sum of the general solution of the associated homogeneous equation $L y=0$ and a particular solution of $L y=f(x)$. First solve the characteristic equation of $L y=0$ and find the general solution of $L y=0$, and then find a particular solution of $L y=f(x)$ by doing the following:

- in the case $f(x)=e^{c x} P_{m}(x)$, if c is a root of the characteristic equation of $L y=0$ with multiplicity s, then look for a particular solution $y_{p}(x)$ of $L y=f(x)$ of the form

$$
y_{p}(x)=x^{s} e^{c x} Q_{m}(x),
$$

where $Q_{m}(x)$ is a polynomial of degree m;

- in the case $f(x)=e^{c x}\left[P_{m_{1}}(x) \cos d x+\widetilde{P}_{m_{2}}(x) \sin d x\right]$, if $c+i d$ is a root of the characteristic equation of $L y=0$ with multiplicity s, then define $m:=\max \left(m_{1}, m_{2}\right)$, and look for a particular solution $y_{p}(x)$ of $L y=f(x)$ of the form

$$
y_{p}(x)=x^{s} e^{c x}\left[Q_{m}(x) \cos d x+\widetilde{Q}_{m}(x) \sin d x\right],
$$

where $Q_{m}(x)$ and $\widetilde{Q}_{m}(x)$ are polynomials of degree m.
If the equation has the form $L y=f_{1}(x)+f_{2}(x)$, its general solution is a sum of the general solution of $L y=0$ and the particular solutions of the equations $L y=f_{1}(x)$ and $L y=f_{2}(x)$.

