
Theoretical foundations of Gaussian quadrature

1 Inner product vector space

Definition 1. A vector space (or linear space) over R is a set V = {u,v,w, . . .} in which
the following two operations are defined:

(A) Addition of vectors:
+ : V × V → V : (u,v) 7→ u + v ,

which satisfies the properties

(A1) associativity: u + (v + w) = (u + v) + w ∀u,v,w ∈ V ;

(A2) existence of a zero vector: ∃ 0 ∈ V such that u + 0 = u ∀u ∈ V ;

(A3) existence of an opposite element: ∀u ∈ V ∃ (−u) ∈ V such that u + (−u) = 0;

(A4) commutativity: u + v = v + u ∀u,v ∈ V ;

(B) Multiplication of a number and a vector:

R× V → V : (α,u) 7→ αu ,

which satisfies the properties

(M1) (αβ)u = α(βu) ∀α, β ∈ R, ∀u ∈ V ;

(M2) distributivity: (α + β)u = αu + βu ∀α, β ∈ R, ∀u ∈ V ;

(M3) distributivity: α(u + v) = αu + αv ∀α ∈ R, ∀u,v ∈ V ;

(M4) normalization: 1u = u ∀u ∈ V .

Definition 2. A normed linear space is a linear space V with an operation

‖ ‖ : V → R : u 7→ ‖u‖ ,

satisfying the properties

(N1) ‖αu‖ = |α|‖u‖ ∀α ∈ R, ∀v ∈ V ;

(N2) triangle inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖ ∀u,v ∈ V ;

(N3) ‖u‖ ≥ 0 ∀u ∈ V ; moreover, if ‖u‖ = 0, then u = 0 (nondegeneracy).
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Definition 3. An inner product linear space (or scalar product linear space) is a linear
space V with an operation

〈 , 〉 : V × V → R : (u,v) 7→ 〈u,v〉 ,

satisfying the properties

(I1) symmetry: 〈u,v〉 = 〈v,u〉 ∀u ∈ V ;

(I2) linearity: 〈αu + v,w〉 = α〈u,w〉+ 〈v,w〉 ∀α ∈ R, ∀u,v,w ∈ V ;

(I3) 〈u,u〉 ≥ 0 ∀u ∈ V ; moreover, if 〈u,u〉 = 0, then u = 0 (nondegeneracy).

Remark. In an inner product linear space, one can define the norm of a vector by

‖u‖ :=
√
〈u,u〉 .

If we write the norm of a vector in an inner product vector space, it is always understood
that it is defined by this equality.

Example. The “standard” or “Euclidean” inner product of the vectors u = (u1, u2, . . . , ud) ∈
Rd and v = (v1, v2, . . . , vd) ∈ Rd is given by

〈u,v〉 =
d∑

i=1

uivi ,

and the corresponding norm is

‖u‖ =

√√√√ d∑
i=1

u2i .

Example. Let G be a symmetric positive-definite d× d matrix, for example

G = (gij) =

 5 4 1
4 7 0
1 0 3

 .

Then one can define inner product corresponding to G by

〈u,v〉 :=
d∑

i=1

d∑
j=1

ui gij vj .

Theorem. In any inner product linear space V , the Cauchy-Schwarz inequality holds:

|〈u,v〉| ≤ ‖u‖ ‖v‖ ∀u,v ∈ V .
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Think about the meaning of this inequality in R3.

Remark. In an inner product linear space, one can define the angle θ between two vectors,
u and v, by

〈u,v〉 =: ‖u‖‖v‖ cos θ .

Note that this definition makes sense thanks to the Cauchy-Schwarz inequality.

Exercise. Find the norm of the vector u = (3, 0,−4) using the “standard” inner product
in R3 and then by using the inner product in R3 defined through the matrix G.

A very important example. Consider the set of all polynomials of degree no greater
than 4, where the operations “addition of vectors” and “multiplication of a number and a
vector” are defined in the standard way, namely: if P and Q are such polynomials,

P (x) = p4x
4 + p3x

3 + p2x
2 + p1x+ p0 , Q(x) = q4x

4 + q3x
3 + q2x

2 + q1x+ q0 ,

then their sum, P +Q is given by

(P +Q)(x) = (p4 + q4)x
4 + (p3 + q3)x

3 + (p2 + q2)x
2 + (p1 + q1)x+ (p0 + q0) ,

and, for α ∈ R, the product αP is defined by

(αP )(x) = (αp4)x
4 + (αp3)x

3 + (αp2)x
2 + (αp1)x+ (αp0) .

Then this set of polynomials is a vector space of dimension 5. One can take for a basis in
this space the set of polynomials

E0(x) := 1 , E1(x) := x , E2(x) := x2 , E3(x) := x3 , E4(x) := x4 .

This, however, is only one of the infinitely many bases in this space. For example, the set of
vectors

G0(x) := x− 1 , G1(x) := x+ 1 , G2(x) := x2 + 3x+ 3 ,

G3(x) := −x3 + 3x2 − 4 , G4(x) := x4 − x3 − 2x

is a perfectly good basis. (Note that I called G0, G1, . . ., Gn “vectors” to emphasize that
what is important for us is the structure of vector space and not so much the fact that these
“vectors” are polynomials.) Any vector (i.e., polynomial of degree ≤ 4) can be represented
in a unique way in any basis, for example, the polynomial P (x) = 3x4 − 5x2 + x+ 7 can be
written as

P = 3E4 − 5E2 + E1 + 7E0 ,

or, alternatively, as
P = 3G4 − 3G3 + 4G2 − 11G1 + 6G0 .
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2 Inner product in the space of polynomials

One can define an inner product structure in the space of polynomials in many different
ways. Let Vn(a, b) stand for the space of polynomials of degree ≤ n defined for x ∈ [a, b].
Most of the theory we will develop works also if a = −∞ and/or b =∞. Let w : [a, b]→ R
be a weight function, i.e., a function satisfying the following properties:

(a) the integral
∫ b

a
w(x) dx exists;

(b) w(x) ≥ 0 for all x ∈ [a, b], and w(x) can be zero only at isolated points in [a, b] (in
particular, w(x) cannot be zero in an interval of nonzero length).

We define inner product in Vn(a, b) by

〈P,Q〉 :=

∫ b

a

P (x)Q(x)w(x) dx ; (1)

if the interval (a, b) is of infinite length, then one has to take w such that this integral exists
for all P and Q in Vn(a, b). Let Vn(a, b;w) stands for the inner product linear space of
polynomials of degree ≤ n defined on [a, b], and inner product defined by (1).

Example. The Legendre polynomials are a family of polynomials P0, P1, P2, . . . such that
Pn is a polynomial of degree n defined for x ∈ [−1, 1], with leading coefficients equal to 1
(“leading” are the coefficients of the highest powers of x) and such that Pn and Pm are
orthogonal for n 6= m in the sense of the following inner product:

〈Pn, Pm〉 =

∫ 1

−1
Pn(x)Pm(x) dx .

In other words, the polynomials P0, P1, P2, . . ., Pn constitute an orthogonal basis of the
space Vn(−1, 1;w(x) ≡ 1). Here are the first several Legendre polynomials:

P0(x) = 1 , P1(x) = x , P2(x) = x2−1

3
, P3(x) = x3−3

5
x , P4(x) = x4−6

7
x2+

3

35
, . . . .

Sometimes Legendre polynomials are normalized in a different way:

P̃0(x) = 1 , P̃1(x) = x , P̃2(x) =
1

2
(3x2 − 1) ,

P̃3(x) =
1

2
(5x3 − 3x) , P̃4(x) =

1

8
(35x4 − 30x2 + 3) , . . . ;

check that Pn is proportional to P̃n for all the polynomials given here.

Exercise. Check that each of the first five Legendre polynomials is orthogonal to all other
Legendre polynomials in the example above.
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Example. The Hermite polynomials are a family of polynomials H0, H1, H2, . . . such
that Hn is a polynomial of degree n defined for x ∈ R, normalized in such a way that
〈Hn, Hn〉 = 2nn!

√
π and 〈Hn, Hm〉 = 0 for n 6= m, where the inner product is defined as

follows:

〈Hn, Hm〉 =

∫ ∞
−∞

Hn(x)Hm(x) e−x
2

dx .

In other words, the polynomials H0, H1, H2, . . ., Hn constitute an orthogonal basis of the
space Vn(−∞,∞; e−x

2
). Here are the first five Hermite polynomials:

H0(x) = 1 , H1(x) = 2x , H2(x) = 4x2−2 , H3(x) = 8x3−12x , H4(x) = 16x4−48x2+12 .

3 Gaussian quadrature

Theorem 1. Let w be a weight function on [a, b], let n be a positive integer, and let G0,
G1, . . ., Gn be an orthogonal family of polynomials with degree of Gk equal to k for each
k = 0, 1, . . . , n. In other words, G0, G1, . . ., Gn form an orthogonal basis of the inner
product linear space Vn(a, b;w). Let x1, x2, . . ., xn be the roots of Gn, and define

Li(x) :=
n∏

j=1, j 6=i

x− xj
xi − xj

for i = 1, 2, . . . , n .

Then the corresponding Gaussian quadrature formula is given by

I(f) :=

∫ b

a

f(x)w(x) dx ≈ In(f) :=
n∑

i=1

wi f(xi) ,

where

wi :=

∫ b

a

Li(x)w(x) dx .

The formula In(f) has degree of precision exactly 2n − 1, which means that In(xk) = I(xk)
for k = 0, 1, . . . , 2n− 1, but there is a polynomial Q of degree 2n for which In(Q) 6= I(Q).

Proof: We will prove that the quadrature formula

In(f) =
n∑

i=1

wi f(xi)

(where the weights wi are given by the formula above) has degree of precision exactly 2n− 1
in three steps:

Step 1: The degree of precision of the quadrature formula is ≥ n− 1.
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Let Vn−1 stand for the linear space of all polynomials of degree not exceeding n− 1 defined
for x ∈ [a, b]. We need to prove that our quadrature formula is exact for any R ∈ Vn−1.
The polynomials Li(x), i = 1, 2, . . . , n are Lagrange polynomials of degree n − 1 such that
Li(xk) = δik for all k = 1, 2, . . . , n. This implies that

n∑
i=1

R(xi)Li(x)

is the Lagrange polynomial of degree n−1 that interpolates the polynomial R at the n points
x1, x2, . . ., xn. Recalling that R is a polynomial of degree of degree n− 1, we conclude that

R(x) =
n∑

i=1

R(xi)Li(x) ∀ x ∈ [a, b] .

Then we have

I(R) =

∫ b

a

R(x)w(x) dx =

∫ b

a

[
n∑

i=1

R(xi)Li(x)

]
w(x) dx

=
n∑

i=1

R(xi)

[∫ b

a

Li(x)w(x) dx

]
=

n∑
i=1

R(xi)wi = In(R) ,

therefore the quadrature formula is exact for any polynomial R of degree up to and including
n− 1, or, in other words, the degree of precision of the quadrature formula is ≥ n− 1.

Step 2: The degree of precision of the quadrature formula is ≥ 2n− 1.

Let P be a polynomial of degree ≤ 2n − 1, i.e., P ∈ V2n−1. Divide P by Gn (which is a
polynomial of degree n to obtain

P (x) = Q(x)Gn(x) +R(x) ,

where Q ∈ Vn−1 and R ∈ Vn−1. Since the polynomials G0, G1, G2, . . ., Gn−1 form a basis of
the linear space Vn−1, we can write Q in the form

Q(x) =
n−1∑
i=0

qiGi(x) .

Then

I(P ) = I(QGn +R) =

∫ b

a

[Q(x)Gn(x) +R(x)] w(x) dx

=

∫ b

a

[
n−1∑
i=0

qiGi(x)Gn(x)

]
w(x) dx+

∫ b

a

R(x)w(x) dx

= 0 +

∫ b

a

R(x)w(x) dx = I(R) ,
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because all polynomials G0, G1, . . ., Gn−1 are orthogonal to Gn (with respect to the inner
product defined with the weight function w):

〈Gi, Gn〉 =

∫ b

a

Gi(x)Gn(x)w(x) dx = 0 ∀ i = 0, 1, 2, . . . , n− 1 .

Now recall that R is a polynomial of degree ≤ n−1 to conclude that I(R) = In(R) according
to what we proved in Step 1.

Since xi are roots of the polynomial Gn, it follows that

P (xi) = Q(xi)Gn(xi) +R(xi) = 0 +R(xi) = R(xi) ,

which implies that In(R) = In(P ). Combining these results, we obtain

I(P ) = In(P ) ∀ P ∈ V2n−1 .

Step 3: The degree of precision of the quadrature formula is 2n− 1.

We already know that the degree of precision is at least 2n− 1, so to prove that it is exactly
2n− 1, it is enough to find one polynomial of degree 2n for which the quadrature formula is
not exact. Note that the polynomial G2

n(x) has degree exactly 2n, and that

I(G2
n) =

∫ b

a

G2
n(x)w(x) dx > 0 (2)

because the integrand, G2
n(x)w(x), is nonnegative and can be zero only at isolated points

(a polynomial like G2
n has at most 2n roots, and w can vanish only at isolated points by the

definition of weight function).

But, since xi are roots of Gn for i = 1, 2, . . . , n, the quadrature formula gives

In(G2
n) =

n∑
i=1

wiG
2
n(xi) = 0 . (3)

Comparing (2) and (3), we see that the quadrature formula is not exact for G2
n. �

In the proof of the above theorem, we implicitly used that Gn has exactly n simple roots, all
of which are inside the interval (a, b). This property is established rigorously in the following
lemma.

Lemma 1. Let w be a weight function on [a, b], let n be a positive integer, and let G0,
G1, . . ., Gn be a family of polynomials such that the degree of Gk is equal to k for each
k = 0, 1, . . . , n, and 〈Gi, Gj〉 = 0 if i 6= j, where the inner product is defined by (1).

Then for each k = 0, 1, 2, . . . , n, the polynomial Gk has exactly k real roots which are simple
and lie in the interval (a, b).
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Proof: First we will prove the existence of real roots for Gk, and then we will count those
roots.

Step 1: Existence of real roots of Gk.

Since the degree of G0 is zero, it follows that G0(x) = α ∀ x ∈ [a, b] for some constant α 6= 0.
(If you don’t understand why α 6= 0, look at page 87 of the book.) Then, for k ≥ 1,

0 =

∫ b

a

G0(x)Gk(x)w(x) dx = α

∫ b

a

Gk(x)w(x) dx ,

where the first equality holds due to orthogonality. However, since w is positive on [a, b]

except possibly being equal to 0 at isolated points, and the integral
∫ b

a
Gk(x)w(x) dx is

equal to zero, we conclude that the function Gk must change sign in (a, b). Since Gk is
a continuous function (all polynomials are continuous functions), the Intermediate Value
Theorem guarantees that Gk has a real root somewhere in (a, b).

Step 2: Counting the roots of Gk.

Suppose that Gk changes sign at exactly j points r1, r2, . . ., rj in (a, b) such that

a < r1 < r2 < · · · < rj < b .

Without loss of generality, assume that Gk(x) > 0 for x ∈ (a, r1). Then Gk alternates sign
on (r1, r2), (r2, r3), . . ., (rj, b). Define the auxiliary function

Z(x) := (−1)j
j∏

i=1

(x− rj) ∈ Vj .

By construction, Z(x) and Gk(x) have the same sign for all x ∈ [a, b]. From this it follows
that ∫ b

a

Z(x)Gk(x)w(x) dx > 0 . (4)

Suppose that j < k. Since the polynomials G0, G1, G1, . . ., Gj form a basis for Vj, there
exist constants z0, z1, z2, . . ., zj such that

Z(x) =

j∑
i=0

ziGj(x) .

Substituting this expression into (4), we obtain∫ b

a

Z(x)Gk(x)w(x) dx =

∫ b

a

[
j∑

i=0

ziGj(x)

]
Gk(x)w(x) dx

=

j∑
i=0

zi

∫ b

a

Gj(x)Gk(x)w(x) dx = 0 ,
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where we have used that j < k, which implies that the polynomials Gj and Gk are orthogonal.
The last equality clearly contradicts (4)! Hence the assumption that j < k was wrong, i.e.,
we must have that j ≥ k. However, since the degree of the polynomial Gk is k, Gk cannot
have more than k roots, which implies that j = k. �

Example: As an example of application of the above Theorem, let us rederive the quadrature
formula we derived in class, namely,∫ 1

−1
f(x) dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
.

This formula can be obtained by using the Legendre polynomials Pk defined on page 3. Take
the polynomials P0(x) = 1, P1(x) = x, and P2(x) = x2 − 1

3
, which are an orthogonal basis

in the linear space V2(−1, 1;w(x) ≡ 1). Since n = 2, we expect that the formula that we
will obtain will have degree of precision 2n − 1 = 2(2) − 1 = 3. As in the Theorem above,
define x1 = − 1√

3
and x2 = 1√

3
to be the zeros of the polynomial P2, define the polynomials

(of degree n− 1 = 2− 1 = 1)

L1(x) =
x− x2
x1 − x2

, L2(x) =
x− x1
x2 − x1

,

and the weights

w1 =

∫ 1

−1
L1(x)w(x) dx =

∫ 1

−1

x− x2
x1 − x2

1 dx =
1

x1 − x2

(
x2

2
− x2x

)∣∣∣∣1
x=−1

= 1 ,

and, similarly, w2 =
∫ 1

−1 L2(x)w(x) dx = · · · = 1, to obtain

I2(f) =
2∑

i=1

wi f(xi) = f

(
− 1√

3

)
+ f

(
1√
3

)
.

As an exercise, check that the degree of accuracy of this quadrature formula is indeed 3.

9


