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1 Introduction

Differential geometry concerns the application of linear algebra and calculus to geometric objects.
The familiar concepts of distances, lines, planes, and surfaces, when treated in the framework of
this field, can be reformulated and simplified to yield numerous applications within mathematics.
In particular, this paper will focus on Riemannian geometry, the study of real, smooth manifolds
equipped with a metric tensor. Like the inner product of linear algebra, the metric tensor is an
additional structure which allows one to define distances and angles (and by extension, surface areas
and volumes) on a manifold. We will cover a broad range of topics and techniques, from differential
forms to the the exterior product to the musical isomorphisms and beyond. This paper aims to
explore these concepts in differential geometry I learned with Dr. Petrov, and complement them
with examples and applications to demonstrate my familiarity with them. Throughout, we will
see many specific instances where the language of differential geometry allows us to condense and
generalize familiar ideas in other mathematical fields.

2 Preliminaries

2.1 Definitions/Notations

This is an oversimplified definition, but for our purposes, a manifold is a set which locally looks
like Euclidean space. The simplest and most important manifold is Rn, and it will be the only
one used in this paper (primarily R2 and R3 to keep things concise). I will also consider only
smooth manifolds, in which each neighborhood locally resembling Rn can be connected to adjacent
neighborhoods by C∞ (infinitely differentiable, or “smooth”) functions. Since Rn is itself a smooth
manifold, this point need not be emphasized.

There are a few notations I use here that the reader should be aware of. For one, indices of vec-
tor components in vector spaces will be superscripts, whereas indices of covector components in
dual spaces will be subscripts. Basis coordinates are the opposite in their respective spaces. For
example, v1e1 + v2e2 ∈ V has components (or “coordinate vectors”) v1, v2 with basis vectors e1, e2,
and α1e

1 + α2e
2 ∈ V ∗ has components α1, α2 with basis covectors e1, e2. Notice that vectors are

in boldface. The reason for this is so one can keep track of where each term belongs. It is also
foolproof by design; for terms with repeated indices, one must be a subscript and the other must
be a superscript in order for a summation to be carried out.
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Speaking of which, I will also adopt the Einstein summation convention, in which I suppress the
summation symbol (Σ) from terms with repeated indices. For instance,

v = v1e1 + v2e2 + . . .+ vnen =
n∑

i=1

viei ≡ viei.

(The number of terms summed over is to be understood from context.) This notation is more
compact and efficient, and is quite popular in fields dealing with tensors, such as in relativity.

2.2 Dual Spaces

Many areas in differential geometry deal with vector spaces and their dual spaces, so a brief discus-
sion is warranted. Recall from linear algebra that the dual space V ∗ of a real linear space V is the
set of all linear functionals (or covectors) on V :

V ∗ := {α : V −→ R} .

Given a basis {e1, e2, . . . , en} for an n-dimensional vector space V , we can construct a basis
{e1, e2, . . . , en} for its dual space V ∗, defined by

ei (ej) = δij, i = 1, . . . , n.

That is, ei acting on any vector v ∈ V picks out its ith component. Notice that dim(V ) = dim(V ∗).
There exists a bilinear map ⟨·, ·⟩ : V ∗ × V −→ R, defined by ⟨α,v⟩ = α (v), called the “natural
pairing” between a vector space and its dual. For any covector α = αie

i ∈ V ∗ and any vector
v = vjej ∈ V ,

⟨α,v⟩ =
〈
αie

i, vjej
〉
= αiv

j
〈
ei, ej

〉
= αiv

jδij = αiv
i ∈ R,

which is the sum of component-wise products.

3 Tangent Spaces

Consider the manifold M = Rm. For any ϵ > 0, let

γ :=
(
γ1(t), γ2(t), . . . , γm(t)

)
: (−ϵ, ϵ) −→ Rm

be a differentiable parameterized curve in M and define γ(0) := x = (x1, x2, . . . , xm) ∈ M. The
tangent vector to γ at x is then

Xx :=
(
X1

x, X
2
x, . . . , X

m
x

)
=

dγ

dt
(0),

and is defined by its action on smooth (C∞) functions. Thus, Xx is in fact a map:

Xx : C∞(M) −→ R

defined by

Xx(f) :=
d

dt
(f ◦ γ(t)) |t=0,
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and so, by the chain rule,

Xx(f) =
d

dt
(f ◦ γ(t)) |t=0 =

m∑
i=1

∂f

∂xi
(γ(0))

dγi

dt
(0) =

dγi

dt
(0)

(
∂f

∂xi

)
x

.

Finally, dropping the test function f :

Xx =
dγi

dt
(0)

(
∂

∂xi

)
x

.

In words, the tangent vector Xx may be represented by a vector sum of components with magnitude
dγi

dt
(0) and direction ∂

∂xi , where the subscripted x represents the point x = γ(0) ∈ M at which the
vector ∂

∂xi is planted. Notice that we have generalized the notion of a tangent line to a curve in any
dimension.

We can generalize even further. For any point m in M = R3, we can endow it with a real linear
(vector) space such that for any two vectors Xm and Ym planted at m, any smooth function f on
M, and any real number a,

(Xm + aYm) (f) := Xm(f) + aYm(f).

This linear space, containing all tangent vectors to the point m on the manifold M, is called the
tangent space to M at m and is denoted by TmM. (The tangent vector Xx from earlier is just
one possible tangent vector at that point, but different curves going through x will yield different
tangent vectors via their directional derivative at that point.)

Furthermore, the tangent spaces at every point in a manifold M can be assembled into a so-called
tangent bundle, which is itself a manifold. The tangent bundle of M is defined to be the disjoint
union of all tangent spaces of M:

TM :=
⋃

m∈M

TmM.

To clarify, a tangent bundle is a collection of tangent spaces, and a tangent space is a collection of
tangent vectors. It should also be emphasized that tangent vectors and tangent spaces are defined
for a specific point on M. There exists a special mapping called the canonical projection, defined
by π : TM −→ M, which takes in a vector Xm ∈ TmM ∈ TM and retrieves the base point m
at which the tangent space TmM is planted. Notice how unlike linear algebra where vectors are
traditionally planted at the origin, differential geometry allows us to easily define vector spaces at
any point in space.

One way to assign a tangent vector to points on a manifold M is by taking the derivative of a curve
γ on M, like at the beginning of this section. One can also assign a tangent vector to every point
on M by applying a vector field to M. Formally, a vector field on a manifold M is a function
X : M −→ TM such that π ◦X = idM, the identity mapping in M. The set of all vector fields
on M is denoted by X(M). We can endow X(M) with a linear space structure: for any a ∈ R, the
vector field aX+Y ∈ X(M) at m ∈ M is defined by

(aX+Y)m := aXm +Ym ∈ TmM.

3



If our manifold is Rn with Cartesian coordinates, then any tangent vector Xm ∈ TmRn can be
expressed in terms of the unit vectors(

∂

∂x1

)
m

,

(
∂

∂x2

)
m

, . . . ,

(
∂

∂xn

)
m

,

which in fact form an orthonormal basis in TmRn. In this basis, every tangent vector applied via a
vector field X is automatically endowed with coordinates.

4 Differential Forms

The formal definition of a differential form is difficult to write with what we know so far, but for our
purposes, differential forms are a generalization of the differential terms like “dx” from calculus.
The simplest forms are forms of order 0, called “zero-forms,” which are nothing but smooth functions
on a manifold M:

Ω0(M) = C∞(M) = {f : M −→ R : f smooth},

where Ω0(M) is the set of all zero-forms on M.

On the other hand, “one-forms” are simply covectors (i.e., the dual-space equivalent of vectors).
The general form of a one-form planted at m ∈ M is αm = αm,i (dx

i)m, and they live in the
“cotangent space” T ∗

mM dual to the tangent space. Here, (dxi)m ∈ T ∗
mM is a linear functional

(dxi)m : TmM → R which acts on tangent vectors via the natural pairing:〈(
dxi
)
m
,

(
∂

∂xj

)
m

〉
= δij.

We need additional tools to define differential forms of higher order. One such tool is the tensor
product, denoted V ∗⊗V ∗, and is defined as the set of all bilinear mappings V ×V −→ R. Elements
of V ∗ ⊗ V ∗ are α ⊗ β = αiβj e

i ⊗ ej, and a basis for V ∗ ⊗ V ∗ is all combinations of ei ⊗ ej,
so dim (V ∗ ⊗ V ∗) = dim(V )2. Another tool we need is the wedge product (or exterior product),
defined in terms of the tensor product:

α ∧ β := α⊗ β − β ⊗ α.

The wedge product is alternating by design, meaning if σ is a permutation of 1, 2, . . . , k, then
ασ(1) ∧ ασ(2) ∧ . . . ∧ ασ(k) = sgn(σ)α1 ∧ α2 ∧ . . . ∧ αk. Specifically, α ∧ β = −β ∧ α and αi ∧ αi = 0
for any index i.

With the concept of wedge products in mind, we can define higher-order forms. A two-form, for
instance, is of the form

ω =
∑
i<j

ωij dx
i ∧ dxj ∈ Ω2(M)

and it acts on two vectors, like this:

ωm (Xm,Ym) =
∑
i<j

ωm,ij

(
X i

mY j
m −Xj

mY i
m

)
.
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Finally, we can express a general k-form as follows:

φ =
∑

i1<···<ik

φi1···ik dxi1 ∧ · · · ∧ dxik ∈ Ωk(M),

where the coefficients φi1···ik are real numbers.

As an example, let’s consider all possible forms on R3, using the dual basis vectors e1, e2, and
e3. There is only one three-form (e1 ∧ e2 ∧ e3; barring any permuations), there are three each of
two-forms (e1 ∧ e2, e2 ∧ e3, e3 ∧ e1) and one-forms (e1, e2, e3), and there is one zero-form (just an
arbitrary smooth function, f). Similarly, in R2, there is only one two-form (e1 ∧ e2), two one-forms
(e1, e2), and one arbitrary smooth function for a zero-form.

There exists another operation called the exterior derivative, which takes a k-form and produces a
(k + 1)-form:

d : Ωk(M) −→ Ωk+1(M).

To find the exterior derivative df of a zero-form (i.e., a smooth function) f , define

⟨(df)m,Xm⟩ := Xm(f) = X i
m

(
∂f

∂xi

)
m

,

and comparing to the earlier definition of the natural pairing, we get

df =
∂f

∂xi
dxi.

For a (k ≥ 1)-form, its exterior derivative is defined differently. If

φ =
∑

i1<···<ik

φi1···ik dxi1 ∧ · · · ∧ dxik

is a general k-form, then

dφ :=

(∑
ℓ

∂φi1···ik
∂xℓ

dxℓ

)
∧ dxi1 ∧ · · · ∧ dxik .

The exterior derivative is a key instrument needed for writing the generalized Stokes theorem,
which we’ll see later. However, we must discuss integration, as well as differentiation, if we are to
accomplish this.

5 Integration of Forms

Differential k-forms may be integrated over k-dimensional manifolds. Let’s start with the k = 1
case, which should be very reminiscent of introductory calculus. Let the one-dimensional manifold
be a curve Γ in an n-dimensional manifold M with parameterization γ : [a, b] −→ M, and let α be

a one-form on M. Then, dγ(t)
dt

∈ Tγ(t)M and αγ(t) ∈ T ∗
γ(t)M. The integral of α over the curve Γ is

defined to be �
Γ

α :=

� b

a

〈
αγ(t),

(
dγ(t)

dt

)
γ(t)

〉
dt =

� b

a

αi
dγi(t)

dt
dt,
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where ⟨·, ·⟩ : T ∗M× TM −→ R is the natural pairing, and the subscript coordinates in the right-
most expression have been removed for clarity.

Let’s consider an example to see how exactly this ties back to calculus. Let α = 5x dx+xy dy ∈ T ∗R2

be a one-form on R2, and let the curve of integration be y = x2 from x = 0 to x = 2. (Note that we
will still integrate over R since the curve can be parameterized by a single variable; the one-form
being defined over R2 simply means the curve lies entirely in the Euclidean plane.) Parameterize

the curve by γ : [0, 2] −→ R2 : t 7−→ γ(t) := (t, t2). Then, dγ(t)
dt

= (1, 2t) = ∂
∂x

+ 2t ∂
∂y

∈ TR2. We

can rewrite α by replacing x with t and y with t2 to obtain α = 5t dx + t3 dy. Now, everything is
in the appropriate form to carry out the integration:

�
Γ

α =

� 2

0

〈
5t dx+ t3 dy,

∂

∂x
+ 2t

∂

∂y

〉
dt =

� 2

0

5t(1) + t3(2t) dt =
114

5
.

You may notice that the calculations used to perform this integration are strikingly similar to a
formula seen in vector calculus, namely,

�
C
F(r) · dr =

� b

a

F(r(t)) · r′(t) dt.

We did perform a sort of dot product when we added pairwise products between basis vectors, and
this is no coincidence; these formulas are actually the same thing written in different ways. There-
fore, we come to an important realization: The integration of one-forms along a one-dimensional
manifold (i.e., a curve) is a generalization of the line integral from vector calculus.

In higher dimensions, the same relationships occur. Two-forms integrated along two-dimensional
manifolds (i.e., surfaces) are generalizations of surface integrals, and three-forms integrated along
three-dimensional manifolds (i.e., volumes) are generalizations of volume integrals. For an n-form
ω ∈ Ωn(M) integrated over an n-dimensional manifold M, the integration is defined such that the
wedge product becomes a usual product:

�
· · ·
�
M︸ ︷︷ ︸

n times

ω =

�
· · ·
�
M

ω1···n(x
1, . . . , xn) dx1 ∧ · · · ∧ dxn :=

�
· · ·
�
M

ω1···n(x
1, . . . , xn) dx1 · · · dxn.

6 Volume Forms

6.1 The Hodge Star Operator

If V is an n-dimensional inner product space, then we can define the so-called “p-fold exterior
product” of V by

ΛpV := V ∧ V ∧ · · · ∧ V︸ ︷︷ ︸
p times

= {v1 ∧ v2 ∧ · · · ∧ vp : vi ∈ V, i = 1, 2, . . . , p} ,

where p ≤ n. We call elements of ΛpV “p-vectors.” We can obtain an induced inner product
⟨·, ·⟩Λ : ΛpV ×ΛpV −→ R on ΛpV using the inner product ⟨·, ·⟩ endowed to V . Given two elements
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v1 ∧ · · · ∧ vp and w1 ∧ · · · ∧wp in ΛpV , we define

⟨v1 ∧ · · · ∧ vp,w1 ∧ · · · ∧wp⟩Λ := det (⟨vi,wj⟩) =

∣∣∣∣∣∣∣∣∣
⟨v1,w1⟩ ⟨v1,w2⟩ · · · ⟨v1,wp⟩
⟨v2,w1⟩ ⟨v2,w2⟩ · · · ⟨v2,wp⟩

...
...

. . .
...

⟨vp,w1⟩ ⟨vp,w2⟩ · · · ⟨vp,wp⟩

∣∣∣∣∣∣∣∣∣ ,
which is simply the Gram determinant from linear algebra. Furthermore, if e1, . . . , en is an or-
thonormal basis for V , then

ei1 ∧ · · · ∧ eip with 1 ≤ i1 < i2 < · · · < ip ≤ n

forms an orthonormal basis for ΛpV . By convention, if we have a basis e1, . . . , en for V , we can
declare that this basis has a positive orientation. Any other basis for V obtained from this one via a
change-of-basis matrix with positive determinant is also positive, and likewise if the change-of-basis
matrix has negative determinant, that basis is negative. Note that whichever basis we initially chose
to be positive is arbitrary; the key thing here is distinguishing bases by their orientation relative to
one another.

If V is an n-dimensional inner product space with a given orientation, we can define the so-called
“Hodge star operator” ∗ on its exterior product:

∗ : ΛpV −→ Λn−pV where ∗
(
ei1 ∧ · · · ∧ eip

)
:= ej1 ∧ · · · ∧ ejn−p .

Here, the indices j1, . . . , jn−p are chosen such that ei1 , . . . , eip , ej1 , . . . , ejn−p is a positive basis for
V , and 0 ≤ p ≤ n (a 0-vector is merely a number, or scalar). If it were a negative basis, then the
only difference is the presence of a minus sign. By definition,

∗(1) = e1 ∧ · · · ∧ en and ∗ (e1 ∧ · · · ∧ en) = 1.

So, the Hodge star operator takes a p-vector and yields an (n − p)-vector. To illustrate what this
operator does more clearly, let’s consider the unit vectors i, j,k in R3. The following are true:

∗(i) = j ∧ k, ∗(j) = k ∧ i, ∗(k) = i ∧ j,

∗(i ∧ j) = k, ∗(j ∧ k) = i, ∗(k ∧ i) = j,

∗(i ∧ j ∧ k) = 1, ∗(1) = i ∧ j ∧ k.

In R3, the 2-vectors (also known as bivectors) j ∧ k,k ∧ i, i ∧ j ∈ Λ2(R3) represent oriented paral-
lelograms spanned by their component vectors. The Hodge star operator acts on these bivectors to
produce a vector perpendicular to their plane. For example, i ∧ j represents a parallelogram in the
xy-plane, and k = ∗(i ∧ j) is the unit vector along the z-axis, which is clearly perpendicular to the
xy-plane.

One interesting application of ∗ in R3 is that it directly relates to the cross product. Let u =
(u1, u2, u3) and v = (v1, v2, v3) be two vectors in R3. Then,

u ∧ v = (u1i+ u2j+ u3k) ∧ (v1i+ v2j+ v3k)

= (u2v3 − u3v2)j ∧ k+ (u3v1 − u1v3)k ∧ i+ (u1v2 − u2v1)i ∧ j,
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and so,

∗(u ∧ v) = (u2v3 − u3v2) ∗ (j ∧ k) + (u3v1 − u1v3) ∗ (k ∧ i) + (u1v2 − u2v1) ∗ (i ∧ j)

= (u2v3 − u3v2)i+ (u3v1 − u1v3)j+ (u1v2 − u2v1)k

= u× v.

As we will see later, the Hodge star operator has other applications to vector calculus as well.

6.2 The Metric Tensor

Let’s now introduce another important concept: the metric tensor (or simply metric), one of the
most fundamental quantities in differential geometry. Recall that if M is our manifold, then at
every point m ∈ M there is a tangent vector space TmM consisting of all vectors tangent to
M at m. The metric tensor at m is a map gm : TmM × TmM −→ R which is (i) symmetric,
so that g(u,v) = g(v,u), (ii) positive definite, so that g(u,u) ≥ 0, and (iii) bilinear, so that
g(au1 + u2, bv1 + v2) = ag(u1) + g(u2) + bg(v1) + g(v2). A manifold M together with a metric
tensor g is called a Riemannian manifold and is denoted by (M, g). If Xm and Ym are two tangent
vectors at m, then

gm(Xm,Ym) =
∑
i,j

gm,ijX
i
mY j

m,

where the components gij depend on the coordinate system used.

Because they have two indices (i and j), metrics can be represented by a matrix:

g =
∑
i,j

gij dx
i ⊗ dxj =


g11 g12 · · · g1n
g21 g22 · · · g2n
...

...
. . .

...
gn1 gn2 · · · gnn

 .

For example, one of the simplest metric tensors is the two-dimensional “Euclidean metric” in Carte-
sian coordinates, which is just the 2× 2 identity matrix:

g(x,y) =

[
1 0
0 1

]
.

So, g(x,y) = dx1 ⊗ dx1 + dx2 ⊗ dx2. In general, the Euclidean metric on Rn is just the n×n identity
matrix

∑n
i=1 dx

i ⊗ dxi (again, assuming Cartesian coordinates).

Using this identity matrix as a baseline, we can find the metric tensor in other coordinate systems. If
(x1, . . . , xn) are the Cartesian coordinates and (y1, . . . , yn) are the new coordinates, we first express
the y coordinates in terms of the original x coordinates. The matrix elements of the new metric
tensor are found by:

gij =
∂(y1, . . . , yn)

∂xi
· ∂(y

1, . . . , yn)

∂xj
,
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where the “·” is the Euclidean dot product. For example, what if we used cylindrical polar coordi-
nates instead? To find the metric tensor in this case, we need to apply the coordinate transforma-
tions: x = ρ cos θ and y = ρ sin θ. Letting r = (x, y) = (ρ cos θ, ρ sin θ), we have

g11 =
∂r

∂ρ
· ∂r
∂ρ

= (cos θ, sin θ) · (cos θ, sin θ) = sin2 θ + cos2 θ = 1

g12 =
∂r

∂ρ
· ∂r
∂θ

= (cos θ, sin θ) · (−ρ sin θ, ρ cos θ) = 0 = g21

g22 =
∂r

∂θ
· ∂r
∂θ

= (−ρ sin θ, ρ cos θ) · (−ρ sin θ, ρ cos θ) = ρ2(sin2 θ + cos2 θ) = ρ2.

Thus,

g(ρ,θ) =

[
1 0
0 ρ2

]
.

Similarly, one can find that in R3,

g(x,y,z) =

1 0 0
0 1 0
0 0 1

 , g(ρ,θ,z) =

1 0 0
0 ρ2 0
0 0 1

 , g(r,θ,ϕ) =

1 0 0
0 r2 0
0 0 r2 sin2 θ


are the metric tensors in Cartesian, cylindrical polar, and spherical polar coordinates, respectively.

To see exactly how the metric tensor gives rise to geometric concepts, as hinted at earlier, consider
the following example. Let u and v be two vectors in the Riemannian manifold (Rn, g). The angle
between them is found in exactly the same way as in linear algebra, but replacing the inner product
with g(u,v):

cos θ =
g(u,v)

∥u∥∥v∥
,

where ∥w∥ :=
√

g(w,w) is the norm induced by the metric g. Bear in mind that the coordi-
nate system used for the vectors u and v must be the same as that used for the metric g. For
simplicity, assume Cartesian coordinates. Then, g =

∑n
i=1 dx

i ⊗ dxi and g(u,v) =
∑

i,j giju
ivj =

(1)u1v1 + · · · + (1)unvn, which is exactly the same as the dot product. This also means that the
norm/length of u is ∥u∥ =

√
(u1)2 + · · ·+ (un)2. Thus, we see how a metric tensor can give rise to

both angles and lengths.

Once we know how to compute angles between vectors and lengths of vectors, we can develop a
rudimentary concept of area. Recall that the magnitude of the cross product ∥u × v∥ is equal to
the area of the parallelogram whose sides have length ∥u∥ and ∥v∥. Now, we know that ∥u× v∥ =
∥u∥∥v∥ sin θ, so using the definitions of length and angle above, we find that

∥u× v∥ =
√

g(u,u)
√

g(v,v)

√√√√1−

(
g(u,v)√

g(u,u)
√

g(v,v)

)2

=
√

g(u,u)g(v,v)− g(u,v)2,

where we used the fact that sin(arccosx) =
√
1− x2. So, the area of this parallelogram can be

defined solely in terms of the metric tensor. To be able to define areas and volumes in general, we
need to discuss an important application of the metric tensor: the volume form.
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6.3 The Volume Form

The general definition of a volume form is simply any top-dimensional differential form on a man-
ifold. That is, if M is an n-dimensional manifold, then a volume form on M is simply an n-form
on M. Natural volume forms exist for Riemannian manifolds, however; the “Riemannian volume
form” on (M, g) is given in terms of the metric tensor g by

volg :=
√

|gij| dx1 ∧ · · · ∧ dxn ∈ Ωn(M),

where |gij| is the determinant of the metric tensor. For instance, since the metric tensor in Rn with
Cartesian coordinates is just the n×n identity matrix, whose determinant is unity, then the volume
form is simply dx1 ∧ · · · ∧ dxn. Using the metrics above in R3 for Cartesian, cylindrical polar, and
spherical polar coordinates, one can show that the volume forms on R3 using these metrics are

volg(x,y,z) = dx ∧ dy ∧ dz, volg(ρ,θ,z) = ρ dρ ∧ dθ ∧ dz, volg(r,θ,ϕ) = r2 sin θ dr ∧ dθ ∧ dϕ,

respectively. Notice that any n-form can be written as a multiple of the volume form, since the
exterior product of an n-form with a zero-form is still an n-form.

Recall that n-forms can be integrated over n-dimensional manifolds. Sticking with Rn as our
manifold, let volg =

√
|gij| dx1 ∧ · · · ∧ dxn be the volume form we work with, and let f : Rn −→ R

be a generic function. The integral of f over Rn is defined by
�
Rn

f volg :=

�
· · ·
�

f(x1, . . . , xn)
√

|gij| dx1 · · · dxn.

Thus, we define that the integration of a volume form transforms into a usual integral from mul-
tivariable calculus, replacing the exterior product with the normal product of differential terms
dx1, . . . , dxn. If we take the three coordinate systems in R3 above, we see that integration of a
function f will transform to

�
f(x, y, z) dx dy dz,

�
f(ρ, θ, z) ρ dρ dθ dz,

�
f(r, θ, ϕ) r2 sin θ dr dθ dϕ,

which are standard triple integrals as seen in a multivariable calculus course. An important realiza-
tion can be made; the volume form simply transforms into the volume element dV , and the

√
|gij|

term at the front of the volume form transforms into the Jacobian factor in each coordinate system.
So, we see that the volume form is a tool which provides a link between integration of differential
forms to integration of functions, connecting the worlds of differential geometry and calculus.

Despite the name, volume forms can symbolize more than just a geometric volume via a triple
integral. If we work in the manifold R, the volume form is just dx, so our integral is nothing special:

�
f vol =

�
f(x) dx,

i.e., the signed area under the curve f . Similarly, working in R2 yields a double integral, which
symbolizes the signed volume under the surface f(x, y):

�
f vol =

�
f(x, y) dx dy.

10



The integrand depends on which coordinate system we work in, since different coordinate systems
have different metric tensors.

Here we have another crucial fact: Since we’re defining integration of a function using its volume
form, and since volume forms depend on the metric tensor g, we see that any calculation involving
integrals of functions can be formulated in terms of the metric tensor. Thus, areas, volumes, arc
lengths, surface areas, centers of mass, moments of inertia, and other geometric calculations are all
attainable via the metric tensor, as we have previously stated. Volume forms were the “missing
link” we needed to fully realize the geometric applications of the metric tensor.

7 Stokes’ Theorem and Other Applications

7.1 The Musical Isomorphisms and Hypersurfaces

Another way we can use the metric tensor is by forming a direct relationship between the tangent
bundle and cotangent bundle of a Riemannian manifold. If (M, g) is our manifold and m ∈ M is
any point in our manifold, then we define the so-called “flat” or “lowering” operator by

g♭m : TmM −→ T ∗
mM : Xm 7−→ g♭m(Xm) := Xm ⌟ gm,

where the ⌟ symbol indicates an operation called the interior product, which is defined byXm ⌟ gm :=
gm(Xm, ·) = gij,mXj

m (dxi)m. So, we can write

g♭m(Xm) = gij,mXj
m (dxi)m.

One property of metric tensors is that they are nondegenerate, meaning their determinant is nonzero
and so they have an inverse. Therefore, we can define an inverse process called the “sharp” or
“raising” operator:

g♯m := (g♭m)−1 : T ∗
mM −→ TmM.

We can write this more explicitly using coordinates. Let (gjkm) be the inverse matrix of (gij,m). By
definition,

∑
j gij,mgjkm = δik. Using that g♯m = (g♭m)−1, we set Xm = g♯m(αm) for some αm ∈ TmM.

From [g♭m(Xm)]i = Xj
mgij,m, we get αi,m = [g♯m(αm)]jgji,m. Now, multiplying both sides by gikm and

summing over i, we get

αi,mgikm = [g♯m(αm)]jgji,mgikm = [g♯m(αm)]jδkj = [g♯m(αm)]k.

Thus, [g♯m(αm)]i = gijmαj,m and so

g♯m(αm) = gijmαi,m

(
∂

∂xj

)
m

.

Similar to how the metric g acts on tangent vectors in the tangent bundle, the inverse metric

g̃ :=
∑
i.j

gij
∂

∂xi
⊗ ∂

∂xj
.

acts on covectors (one-forms) from the cotangent bundle. If αm and βm are two covectors planted
at m ∈ M, then

g̃(αm, βm) :=
〈
αm, g♭m(βm)

〉
=
∑
i,j

gi,jm αi,mβj,m.

11



Together, the flat and sharp operators define the musical isomorphisms, called so because ♭ and ♯
represent lowering and raising operators in music as they do in differential geometry. If we ignore
the planting point m and consider these operators as acting on the whole manifold, then these
operators represent isomorphisms between the vector fields on M and the one-forms on M:

g♭ : X(M) −→ Ω1(M) : g♭(X) = gijX
i dxj

and

g♯ : Ω1(M) −→ X(M) : g♯(α) = gijαi
∂

∂xj
,

where again g♭ and g♯ are inverse operators:

g♯(g♭(X)) = X and g♭(g♯(α)) = α.

If M = Rn is an n-dimensional manifold, then we call Σ ⊂ Rn−1 a hypersurface, which has dimen-
sion n− 1 and is embedded in the ambient manifold Rn. We can use the musical isomorphisms, the
metric tensor, and the volume form on the manifold together to visualize what the induced volume
form on a hypersurface might look like.

Consider a sphere of radius R centered at the origin. Now,

g = (gij) =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 and g̃ = (gij) =

1 0 0
0 1

r2
0

0 0 1
r2 sin2 θ


are the metric tensor and inverse metric, respectively, on R3 using spherical polar coordinates.
The volume form, as mentioned earlier, is vol = r2 sin θ dr ∧ dθ ∧ dϕ. The volume form on the
hypersurface Σ induced by vol is given by volΣ := (N ⌟ vol) |Σ ∈ Ωn−1(Σ), where “|Σ” indicates that
N ⌟ vol is restricted to the hypersurface Σ, and N is the unit normal vector pointing outward from
Σ and is given by

N := g♯(dΣ) = gij
∂Σ

∂xi

∂

∂xj
.

The hypersurface in this case is just the surface of the sphere, which is given by r = R, so let
Σ := r − R = 0 represent our hypersurface. Since only diagonal terms in the inverse metric exist,
we only sum three terms when calculating the normal vector N:

N = g11
∂Σ

∂r

∂

∂r
+ g22

∂Σ

∂θ

∂

∂θ
+ g33

∂Σ

∂ϕ

∂

∂ϕ
= (1)(1)

∂

∂r
+ 0 + 0 =

∂

∂r
,

which makes sense since the normal vector on a sphere’s surface always points radially outward.
The other two terms vanish because the surface depends only on r, and notice also that N is already
normalized. Then, we have

N ⌟ vol =
3∑

i=1

(−1)i−1N i dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx3

= (1)(r2 sin θ) dθ ∧ dϕ− (0)(r2 sin θ) dr ∧ dϕ+ (0)(r2 sin θ) dr ∧ dθ

= r2 sin θ dθ ∧ dϕ,
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where the hat notation d̂xi means that term is excluded in the sum. When restricted to the surface
Σ, we get

volΣ = (N ⌟ vol) |r=R = R2 sin θ dθ ∧ dϕ.

Notice that whereas the volume form on R3 is a volume element, the volume form on a two-
dimensional hypersurface is an area element; specifically, volΣ is the differential normal area in
spherical coordinates in the direction of r̂ = ∂

∂r
. Thus, we see how the raising operator ♯ together

with the metric and volume form can be used to contract a volume element of a sphere to an area
element on its surface.

7.2 Vector Calculus

For the next application, let’s discuss how the operations of vector calculus have equivalent formu-
lations in the language of differential geometry.

We have seen already how the cross product in R3 can be expressed via the exterior product and
Hodge star operator: u × v = ∗(u ∧ v), and also how the inner product is defined in terms of the
metric tensor: ⟨u,v⟩ := g(u,v) := giju

ivj. If f is a smooth function, recall that the gradient of f is
a vector which describes the magnitude and direction of steepest ascent of f at a given point. The
gradient has an equivalent formulation in terms of the sharp operator and the exterior derivative:

∇f = g♯(df).

Let’s check that this holds in R3 with Cartesian coordinates. Using df = ∂f
∂xi dx

i and that g♯(α) =
gijαi

∂
∂xj for any one-form α, the left-hand side becomes

gij dfi
∂

∂xj
= gij

∂f

∂xi

∂

∂xj
.

In R3 with Cartesian coordinates, gij = δij is the 3× 3 identity matrix. Furthermore, we write the
coordinates x1, x2, x3 as x, y, z, respectively, and for the unit vectors ∂

∂x1 ,
∂

∂x2 ,
∂

∂x3 we write i, j,k,
respectively. The left-hand side can thus be written as

δij
∂f

∂xi

∂

∂xj
=

∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k,

which is exactly the expression for the gradient from vector calculus.

The other vector calculus operations can be expressed in the language of differential geometry as
well, but I won’t derive them all for the sake of brevity. Instead, I’ll focus on the generalized Stokes
theorem, which is one of the most important results in vector calculus. If M is an n-dimensional
manifold and ∂M is its (n − 1)-dimensional boundary, then the generalized Stokes theorem holds
that �

M
dω =

�
∂M

ω,

where ω is an (n − 1)-form and dω is its exterior derivative, an n-form. It turns out that this
equation generalizes several major theorems from calculus, so let’s explore how this happens.
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Suppose our manifold is M = [a, b] ⊂ R and ω = f(x) ∈ Ω0([a, b]) is our differential form. Then,
∂M = {a−, b+} and dω = df

dx
dx, where the subscripts on a− and b+ indicate that the boundary is

oriented. This reduces the generalized Stokes theorem to� b

a

df

dx
dx = f(b)− f(a),

which is actually the fundamental theorem of calculus!

Now, suppose that C is an oriented, piecewise-smooth, simple closed curve in R2 and that D is the
planar region bounded by C. If ω = Adx+B dy is a one-form on D, then�

C

Adx+B dy =

�
D

d(Adx+B dy)

=

�
D

(
∂A

∂x
dx ∧ dx+

∂A

∂y
dy ∧ dx+

∂B

∂x
dx ∧ dy +

∂B

∂y
dy ∧ dy

)
=

�
D

(
0− ∂A

∂y
dx ∧ dy +

∂B

∂x
dx ∧ dy + 0

)
=

�
D

(
∂B

∂x
− ∂A

∂y

)
dx ∧ dy

≡
�

D

(
∂B

∂x
− ∂A

∂y

)
dx dy,

which is Green’s theorem, relating the line integral around a closed curve to the double integral of
the area it encloses.

We can extend this to the classical Stokes theorem, which relates the surface integral over an
arbitrary surface in R3 to a line integral around the surface’s boundary curve. To do this, let S
be an oriented, piecewise-smooth surface in R3 bounded by an oriented, piecewise-smooth, simple
closed curve C and let ω = Adx+B dy + C dz ∈ Ω1(S). Then,�

C
Adx+B dy + C dz =

�
S

d(Adx+B dy + C dz)

=

�
S

∂A

∂x
dx ∧ dx+

∂A

∂y
dy ∧ dx+

∂A

∂Z
dz ∧ dx

+
∂B

∂y
dx ∧ dy +

∂B

∂y
dy ∧ dy +

∂B

∂y
dz ∧ dy

+
∂C

∂y
dx ∧ dz +

∂C

∂y
dy ∧ dz +

∂C

∂y
dz ∧ dz

=

�
S

(
∂C

∂y
− ∂B

∂z

)
dy ∧ dz +

(
∂A

∂z
− ∂C

∂x

)
dz ∧ dx

+

(
∂B

∂x
− ∂A

∂y

)
dx ∧ dy.

If we define F := Ai+Bj+Ck, then the integrand on the left-hand side is F ·dr, and the integrand
on the right-hand side is (curl F) ·N = (∇ × F) ·N, where N is the unit normal vector pointing
outward from S, and we arrive at�

C
F · dr =

�
S

(∇× F) ·N dA,
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which is Stokes’ theorem as seen in vector calculus.

One can also show that the generalized Stokes theorem implies the fundamental theorem for line
integrals and the divergence theorem. Therefore, we’ve come to the remarkable conclusion that all
of these theorems seen in an introductory calculus course were amalgamated into a single elegant
theorem in differential geometry.

7.3 Maxwell’s Equations

Although the primary focus of this paper is how differential geometry relates to other mathematical
disciplines, I’d like to briefly discuss an area where differential geometry arises in physics. In
electrodynamics, Maxwell’s field equations are (i) ∇ · E = ρ/ϵ0, (ii) ∇ ·B = 0, (iii) ∇× E = −∂B

∂t
,

and (iv) ∇×E = µ0J+µ0ϵ0
∂E
∂t
. Here, E and B are the electric field and magnetic field, respectively;

t is time, ρ is the charge per unit volume (charge density); J is the current per unit area (current
density); and ϵ0 and µ0 represent fundamental constants, the permittivity and permeability of free
space, respectively. These equations can be greatly simplified via differential geometry. First, we’ll
use Gaussian units instead of SI units to eliminate constants, and we’ll also introduce a few more
concepts. One is “Minkowski space,” which is a four-dimensional space combining the three spatial
components (x, y, x) with the time component t. The Minkowski space four-vector is defined as
−c dt ∧ dx ∧ dy ∧ dz, and this space possesses a metric tensor of the form

gij =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

We also introduce the so-called “field two-form” F := 1
2
Fab dx

a ∧ dxb which describes both the
electric and magnetic fields jointly via the Faraday tensor

Fab :=


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 .

When written in spacetime coordinates via the Minkowski metric, it becomes

F = Bx dy ∧ dz +By dz ∧ dx+Bz dx ∧ dy + Ex dx ∧ dt+ Ey dy ∧ dt+ Ez dz ∧ dt,

and its Hodge dual is therefore

∗F = −Bx dx ∧ dt−By dy ∧ dt−Bz dz ∧ dt+ Ex dy ∧ dz + Ey dz ∧ dx+ Ez dx ∧ dy.

Lastly, we need the “current three-form” J := 1
6
jaεabcd dx

b ∧ dxc ∧ dxd, which is given by

J = ρ dx ∧ dy ∧ dz − jx dt ∧ dy ∧ dz − jy dt ∧ dz ∧ dx− jz dt ∧ dx ∧ dy,

where jx, jy, and jz are the components of the current density.

With these quantities in hand, Maxwell’s equations can be combined into

dF = 0 and d(∗F) = J.
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Referencing the original equations, (ii) and (iii) combined into the first equation, and (i) and (iv)
combined into the second. Using the language of differential geometry simplified four equations
involving four variables to just two equations in two variables. Thus, the many steps taken and
quantities introduced to express Maxwell’s equations in such a simple way allowed for a much more
elegant formulation.

8 Conclusion

As I have learned from my research of various topics in differential geometry, this field provides
alternative and generalized formulations of concepts from many mathematical disciplines. In fact,
many of the terms seen in calculus and linear algebra, such as differentials, cross products, inner
products, and the integral theorems of vector calculus can all be simplified by expressing them using
the machinery of differential geometry. We have seen how tools like the wedge product, exterior
derivative, Hodge star, metric tensor, volume form, and the musical isomorphisms can be combined
to yield different results. Familiar geometric concepts such as length, area, and volume are all
attainable via the metric tensor, a powerful tool on Riemannian manifolds which generalizes the
inner product. The volume form gives us a direct approach to integrating functions on a manifold.
Exterior derivatives are merely generalizations of the differential from calculus. These are just a
few examples of many which demonstrate the power of differential geometry as it pertains to other
mathematical fields. I have come to appreciate its unifying nature; ideas I once considered disparate
and unrelated were in fact part of a larger framework I had yet to discover. The intuitive, integrated
approach it offers to mathematics gives us a sophisticated method for linking different disciplines.
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